-
Notifications
You must be signed in to change notification settings - Fork 7
/
fpca_subspace_merge.m
116 lines (107 loc) · 2.93 KB
/
fpca_subspace_merge.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
function [Um, Sm] = fpca_subspace_merge(U1, S1, U2, S2, lambda1, lambda2, r, type)
%FPCA_SUBSPACE_MERGE Merges two subspaces of equal or different ranks.
% Requires both (orthogonal) subspaces along with their singular values.
% Futher, optionally, we can provide weighting factors for each subspace
% (lambdas {1, 2}), the desired rank as well as the type of
% merge algorithm used.
%
% This method currently supports three merging algorithm types -- by
% default we use type 3.
%
% Supported types:
%
% 1) purely SVD based (good if d and r is small)
%
% 2) slightly more efficient QR + SVD based (good for medium d and r)
%
% 3) best memory effiency with excellent preservation of Singular
% Values using again a combination or QR + SVD but the block matrix
% that the SVD is applied upon is munch smaller.
%
% Based on work of Grammenos et al.: https://arxiv.org/abs/1907.08059
%
% Author: Andreas Grammenos ([email protected])
%
% Last touched date: 26/04/2020
%
% License: GPLv3
%
% find the limits
r1 = size(U1, 2);
r2 = size(U2, 2);
% check if S1 is a vector as we need to expand
if isvector(S1)
S1 = diag(S1);
end
% check if S2 is a vector as we need to expand
if isvector(S2)
S2 = diag(S2);
end
% ensure we have r x r singular values
S1 = S1(1:r1, 1:r1);
S2 = S2(1:r2, 1:r2);
rmax = max(r1, r2);
% target type of algo - default we use type 3
if nargin < 8
type = 3;
end
% target rank, otherwise default to max of the two
if nargin < 7
r = rmax;
elseif r > rmax
r = rmax;
end
% check if our forgetting factors are present, otherwise
% set to default of 1
if nargin < 5
lambda1 = 1;
lambda2 = 1;
end
% check if we have nan values
if isnan(U1)
Um = U2;
Sm = S2;
return;
elseif isnan(U2)
Um = U1;
Sm = S1;
return
end
% ts = tic;
% "optimal"
if type == 1
[Um, Sm, ~] = svds([U1*S1, U2*S2], 2*r);
% somewhat efficient
elseif type == 2
[Qp, Rp] = qr([lambda1*(U1*S1), lambda2*U2*S2], 0);
[Ur, Sr, ~] = svds(Rp, r);
qq = Qp(:, 1:min(r1+r2, rmax));
uu = Ur(1:(min(r1+r2, rmax)), 1:r);
Um = qq*uu;
Sm = Sr;
% naive
elseif type == 3
% get the multiplication of the subspace and descent to
% r1 x r2 space.
z_k = U1'*U2;
% perform economy QR to get the U' and R
[Up, Rp] = qr(U2-U1*z_k, 0);
% construct the block matrix of (r1+r2) x (r1+r2) space
blk_mat_s = [lambda1*S1, z_k*S2; zeros(r2, r1), lambda2*Rp*S2];
% get the svds from the block mat using the target rank
% which by default is the max(r1, r2)
[Ur, Sr, ~] = svds(blk_mat_s, 2*r);
% get the reference R1 & R2 from Ur
R1 = Ur(1:r1, 1:r);
R2 = Ur(1:r2, 1:r);
% finally set the outputs
Um = U1*R1 + Up*R2;
Sm = Sr(1:r, 1:r);
% unrecognised, signal the error
else
error('unknown type, types have to be between 1-3');
end
%my_toc(ts);
Um = Um(:, 1:r);
Sm = Sm(1:r, 1:r);
end