forked from titu1994/keras-non-local-nets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
non_local_layerstyle.py
165 lines (128 loc) · 6.18 KB
/
non_local_layerstyle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from tensorflow.keras.layers import Layer, Conv1D, Conv2D, Conv3D, Reshape, dot, Activation, Lambda, MaxPool1D, add
from tensorflow.keras import backend as K
class NonLocalBlock(Layer):
def __init__(self, intermediate_dim=None, compression=2, mode='embedded', add_residual=True, **kwargs):
"""
Initializes a NonLocalBlock layer.
Parameters
----------
intermediate_dim: None / int
The dimension of the intermediate representation. Can be `None` or a positive integer greater than 0. If `None`, computes the intermediate dimension as half of the input channel dimension.
compression: None or positive integer.
Compresses the intermediate representation during the dot products to reduce memory consumption. Default is set to 2, which states halve the time/space/spatio-time dimension for the intermediate step. Set to 1 to prevent computation compression. None or 1 causes no reduction.
mode: str
Mode of operation. Can be one of `embedded`, `gaussian`, `dot` or `concatenate`.
add_residual: bool
Decides if the residual connection should be added or not. Default is True for ResNets, and False for Self Attention.
**kwargs: any
Additional keyword arguments to be passed to the parent class.
"""
super(NonLocalBlock, self).__init__(**kwargs)
self.intermediate_dim = intermediate_dim
self.compression = compression
self.mode = mode
self.add_residual = add_residual
def build(self, input_shape):
super(NonLocalBlock, self).build(input_shape)
def call(self, inputs):
ip = inputs
channel_dim = 1 if K.image_data_format() == 'channels_first' else -1
input_shape = K.int_shape(ip)
if self.mode not in ['gaussian', 'embedded', 'dot', 'concatenate']:
raise ValueError('`mode` must be one of `gaussian`, `embedded`, `dot` or `concatenate`')
if self.compression is None:
self.compression = 1
# check rank and calculate the input shape
rank = len(input_shape)
if rank not in [3, 4, 5]:
raise ValueError('Input dimension has to be either 3 (temporal), 4 (spatial) or 5 (spatio-temporal)')
elif rank == 3:
batchsize, dims, channels = input_shape
else:
if channel_dim == 1:
batchsize, channels, *dims = input_shape
else:
batchsize, *dims, channels = input_shape
# verify correct intermediate dimension specified
if self.intermediate_dim is None:
self.intermediate_dim = channels // 2
if self.intermediate_dim < 1:
self.intermediate_dim = 1
else:
self.intermediate_dim = int(self.intermediate_dim)
if self.intermediate_dim < 1:
raise ValueError('`intermediate_dim` must be either `None` or positive integer greater than 1.')
if self.mode == 'gaussian': # Gaussian instantiation
x1 = Reshape((-1, channels))(ip) # xi
x2 = Reshape((-1, channels))(ip) # xj
f = dot([x1, x2], axes=2)
f = Activation('softmax')(f)
elif self.mode == 'dot': # Dot instantiation
# theta path
theta = self._convND(ip, rank, self.intermediate_dim)
theta = Reshape((-1, self.intermediate_dim))(theta)
# phi path
phi = self._convND(ip, rank, self.intermediate_dim)
phi = Reshape((-1, self.intermediate_dim))(phi)
f = dot([theta, phi], axes=2)
size = K.int_shape(f)
# scale the values to make it size invariant
f = Lambda(lambda z: (1. / float(size[-1])) * z)(f)
elif self.mode == 'concatenate': # Concatenation instantiation
raise NotImplementedError('Concatenate model has not been implemented yet')
else: # Embedded Gaussian instantiation
# theta path
theta = self._convND(ip, rank, self.intermediate_dim)
theta = Reshape((-1, self.intermediate_dim))(theta)
# phi path
phi = self._convND(ip, rank, self.intermediate_dim)
phi = Reshape((-1, self.intermediate_dim))(phi)
if self.compression > 1:
# shielded computation
phi = MaxPool1D(self.compression)(phi)
f = dot([theta, phi], axes=2)
f = Activation('softmax')(f)
# g path
g = self._convND(ip, rank, self.intermediate_dim)
g = Reshape((-1, self.intermediate_dim))(g)
if self.compression > 1 and self.mode == 'embedded':
# shielded computation
g = MaxPool1D(self.compression)(g)
# compute output path
y = dot([f, g], axes=[2, 1])
# reshape to input tensor format
if rank == 3:
y = Reshape((dims, self.intermediate_dim))(y)
else:
if channel_dim == -1:
y = Reshape((*dims, self.intermediate_dim))(y)
else:
y = Reshape((self.intermediate_dim, *dims))(y)
# project filters
y = self._convND(y, rank, channels)
# residual connection
if self.add_residual:
y = add([ip, y])
return y
def _convND(self, ip, rank, channels):
"""
Applies a convolution operation based on the rank of the input tensor.
Returns:
Tensor: Output of the convolution operation.
Parameters
----------
ip: array
Input tensor.
rank: int
Rank of the input tensor. Must be 3, 4, or 5.
channels: int
Number of output channels for the convolution.
"""
assert rank in [3, 4, 5], "Rank of input must be 3, 4 or 5"
if rank == 3:
x = Conv1D(channels, 1, padding='same', use_bias=False, kernel_initializer='he_normal')(ip)
elif rank == 4:
x = Conv2D(channels, (1, 1), padding='same', use_bias=False, kernel_initializer='he_normal')(ip)
else:
x = Conv3D(channels, (1, 1, 1), padding='same', use_bias=False, kernel_initializer='he_normal')(ip)
return x