forked from titu1994/keras-non-local-nets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnon_local.py
133 lines (112 loc) · 5.8 KB
/
non_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from tensorflow.keras.layers import Layer, Conv1D, Conv2D, Conv3D, Reshape, Dot, Activation, Lambda, MaxPool1D, Add
from tensorflow.keras import backend as K
class NonLocalBlock(Layer):
def __init__(self, intermediate_dim=None, compression=2, mode='embedded', add_residual=True, **kwargs):
"""
Initializes a NonLocalBlock with configurable parameters and operational mode.
Parameters
----------
intermediate_dim : int, optional
The dimension of the intermediate representation in the convolution layers. If None, it defaults to half of the channels in the input shape.
compression : float, optional
The factor by which to compress feature dimensions during pooling operations. Defaults to 2, halving the feature dimensions.
mode : str, optional
Operational mode of the block. Supported modes are 'gaussian', 'dot', 'embedded', and 'concatenate'. Defaults to 'embedded'.
add_residual : bool, optional
Whether to include a residual connection that adds the input to the output of the block. Defaults to True.
kwargs : dict
Additional keyword arguments inherited from tf.keras.layers.Layer.
"""
super(NonLocalBlock, self).__init__(**kwargs)
self.intermediate_dim = intermediate_dim
self.compression = compression if compression is not None else 1
self.mode = mode
self.add_residual = add_residual
self.conv_layers = {}
def build(self, input_shape):
channel_dim = 1 if K.image_data_format() == 'channels_first' else -1
channels = input_shape[channel_dim]
self.intermediate_dim = channels // 2 if self.intermediate_dim is None else int(self.intermediate_dim)
if self.intermediate_dim < 1:
self.intermediate_dim = 1
# Instantiate convolution layers here to be used in the call method
rank = len(input_shape)
self.conv_layers['theta'] = self._create_conv_layer(rank, self.intermediate_dim)
self.conv_layers['phi'] = self._create_conv_layer(rank, self.intermediate_dim)
self.conv_layers['g'] = self._create_conv_layer(rank, self.intermediate_dim)
self.conv_layers['final'] = self._create_conv_layer(rank, channels)
def call(self, inputs):
# Use the convolution layers created in build
theta = self.conv_layers['theta'](inputs)
phi = self.conv_layers['phi'](inputs)
g = self.conv_layers['g'](inputs)
channels = self._initialize_dimensions(inputs)
f = self._instantiate_f(channels, theta, phi, inputs)
g = self._handle_g(g)
y = self._non_local_operation_neural(f, g, inputs)
z = self._non_local_block(y, inputs)
return z
def _initialize_dimensions(self, inputs):
channel_dim = 1 if K.image_data_format() == 'channels_first' else -1
channels = K.int_shape(inputs)[channel_dim]
if self.mode not in ['gaussian', 'embedded', 'dot', 'concatenate']:
raise ValueError('`mode` must be one of `gaussian`, `embedded`, `dot`, or `concatenate`')
return channels
def _instantiate_f(self, channels, theta, phi, inputs):
if self.mode == 'gaussian':
x = Reshape((-1, channels))(inputs)
f = Dot(axes=2)([x, x])
f = Activation('softmax')(f)
elif self.mode == 'dot':
theta = Reshape((-1, self.intermediate_dim))(theta)
phi = Reshape((-1, self.intermediate_dim))(phi)
f = Dot(axes=2)([theta, phi])
f = Lambda(lambda z: (1. / float(K.int_shape(f)[-1])) * z)(f) # reintroduced scaling
f = Activation('softmax')(f)
elif self.mode == 'embedded':
# Embedded Gaussian instantiation
theta = Reshape((-1, self.intermediate_dim))(theta)
phi = Reshape((-1, self.intermediate_dim))(phi)
if self.compression > 1:
phi = MaxPool1D(self.compression)(phi) # Apply compression as max pooling
f = Dot(axes=2)([theta, phi])
f = Activation('softmax')(f)
else:
# If concatenate mode or any other mode, handle accordingly
raise NotImplementedError('Concatenate model has not been implemented yet')
return f
def _handle_g(self, g):
# g has already been instantiated with a simple linear embedding at the beginning of call
g = Reshape((-1, self.intermediate_dim))(g)
if self.compression > 1 and self.mode == 'embedded':
g = MaxPool1D(self.compression)(g)
return g
def _non_local_operation_neural(self, f, g, inputs):
# Final output path
y = Dot(axes=[2, 1])([f, g])
y = Reshape(K.int_shape(inputs)[1:-1] + (self.intermediate_dim,))(y)
return y
def _non_local_block(self, y, inputs):
# Final combination and residual connection
y = self.conv_layers['final'](y)
if self.add_residual:
y = Add()([inputs, y])
return y
def _create_conv_layer(self, rank, channels):
if rank == 3:
return Conv1D(channels, 1, padding='same', use_bias=False, kernel_initializer='he_normal')
elif rank == 4:
return Conv2D(channels, (1, 1), padding='same', use_bias=False, kernel_initializer='he_normal')
elif rank == 5:
return Conv3D(channels, (1, 1, 1), padding='same', use_bias=False, kernel_initializer='he_normal')
def compute_output_shape(self, input_shape):
return input_shape
def get_config(self):
config = super(NonLocalBlock, self).get_config()
config.update({
"intermediate_dim": self.intermediate_dim,
"compression": self.compression,
"mode": self.mode,
"add_residual": self.add_residual
})
return config