-
Notifications
You must be signed in to change notification settings - Fork 28
/
convnet_aig.py
335 lines (278 loc) · 12.6 KB
/
convnet_aig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
'''ConvNet-AIG in PyTorch.
Residual Network is from the original ResNet paper:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
Adaptive Inference Graphs is from the original ConvNet-AIG paper:
[2] Andreas Veit, Serge Belognie
Convolutional Networks with Adaptive Inference Graphs. ECCV 2018
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np
from torch.autograd import Variable
from gumbelmodule import GumbleSoftmax
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class Sequential_ext(nn.Module):
"""A Sequential container extended to also propagate the gating information
that is needed in the target rate loss.
"""
def __init__(self, *args):
super(Sequential_ext, self).__init__()
if len(args) == 1 and isinstance(args[0], OrderedDict):
for key, module in args[0].items():
self.add_module(key, module)
else:
for idx, module in enumerate(args):
self.add_module(str(idx), module)
def __getitem__(self, idx):
if not (-len(self) <= idx < len(self)):
raise IndexError('index {} is out of range'.format(idx))
if idx < 0:
idx += len(self)
it = iter(self._modules.values())
for i in range(idx):
next(it)
return next(it)
def __len__(self):
return len(self._modules)
def forward(self, input, temperature=1, openings=None):
gate_activations = []
for i, module in enumerate(self._modules.values()):
input, gate_activation = module(input, temperature)
gate_activations.append(gate_activation)
return input, gate_activations
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
# Gate layers
self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1)
self.fc1bn = nn.BatchNorm1d(16)
self.fc2 = nn.Conv2d(16, 2, kernel_size=1)
# initialize the bias of the last fc for
# initial opening rate of the gate of about 85%
self.fc2.bias.data[0] = 0.1
self.fc2.bias.data[1] = 2
self.gs = GumbleSoftmax()
self.gs.cuda()
def forward(self, x, temperature=1):
# Compute relevance score
w = F.avg_pool2d(x, x.size(2))
w = F.relu(self.fc1bn(self.fc1(w)))
w = self.fc2(w)
# Sample from Gumble Module
w = self.gs(w, temp=temperature, force_hard=True)
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out = self.shortcut(x) + out * w[:,1].unsqueeze(1)
out = F.relu(out)
# Return output of layer and the value of the gate
# The value of the gate will be used in the target rate loss
return out, w[:, 1]
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
# Gate layers
self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1)
self.fc1bn = nn.BatchNorm1d(16)
self.fc2 = nn.Conv2d(16, 2, kernel_size=1)
# initialize the bias of the last fc for
# initial opening rate of the gate of about 85%
self.fc2.bias.data[0] = 0.1
self.fc2.bias.data[1] = 2
self.gs = GumbleSoftmax()
self.gs.cuda()
def forward(self, x, temperature=1):
# Compute relevance score
w = F.avg_pool2d(x, x.size(2))
w = F.relu(self.fc1bn(self.fc1(w)))
w = self.fc2(w)
# Sample from Gumble Module
w = self.gs(w, temp=temperature, force_hard=True)
# TODO: For fast inference, check decision of gate and jump right
# to the next layer if needed.
out = F.relu(self.bn1(self.conv1(x)), inplace=True)
out = F.relu(self.bn2(self.conv2(out)), inplace=True)
out = self.bn3(self.conv3(out))
out = self.shortcut(x) + out * w[:,1].unsqueeze(1)
out = F.relu(out, inplace=True)
# Return output of layer and the value of the gate
# The value of the gate will be used in the target rate loss
return out, w[:, 1]
class ResNet_ImageNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.in_planes = 64
super(ResNet_ImageNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.linear = nn.Linear(512 * block.expansion, num_classes)
for k, m in self.named_modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if 'fc2' in str(k):
# Initialize last layer of gate with low variance
m.weight.data.normal_(0, 0.001)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, num_blocks, stride=1):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return Sequential_ext(*layers)
def forward(self, out, temperature=1):
gate_activations = []
out = self.relu(self.bn1(self.conv1(out)))
out = self.maxpool(out)
out, a = self.layer1(out, temperature)
gate_activations.extend(a)
out, a = self.layer2(out, temperature)
gate_activations.extend(a)
out, a = self.layer3(out, temperature)
gate_activations.extend(a)
out, a = self.layer4(out, temperature)
gate_activations.extend(a)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out, gate_activations
class ResNet_cifar(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet_cifar, self).__init__()
self.in_planes = 16
self.conv1 = conv3x3(3,16)
self.bn1 = nn.BatchNorm2d(16)
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
self.linear = nn.Linear(64*block.expansion, num_classes)
for k, m in self.named_modules():
if isinstance(m, nn.Conv2d):
if 'fc2' in str(k):
# Initialize last layer of gate with low variance
m.weight.data.normal_(0, 0.001)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return Sequential_ext(*layers)
def forward(self, x, temperature=1, openings=None):
gate_activations = []
out = F.relu(self.bn1(self.conv1(x)))
out, a = self.layer1(out, temperature)
gate_activations.extend(a)
out, a = self.layer2(out, temperature)
gate_activations.extend(a)
out, a = self.layer3(out, temperature)
gate_activations.extend(a)
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out, gate_activations
def ResNet110_cifar(nclass=10):
return ResNet_cifar(BasicBlock, [18,18,18], num_classes=nclass)
def ResNet50_ImageNet():
return ResNet_ImageNet(Bottleneck, [3,4,6,3])
def ResNet101_ImageNet():
return ResNet_ImageNet(Bottleneck, [3,4,23,3])
def ResNet152_ImageNet():
return ResNet_ImageNet(Bottleneck, [3,8,36,3])
class ActivationAccum():
def __init__(self, epoch):
self.numblocks = [18,18,18]
self.gates = {i: 0 for i in range(np.sum(self.numblocks))}
self.classes = {i: 0 for i in range(10)}
self.numbatches = 0
self.epoch = epoch
if self.epoch % 25 == 0:
self.heatmap = torch.cuda.FloatTensor(len(self.classes), len(self.gates))
self.heatmap[:, :] = 0
def accumulate(self, actives, targets):
for j, act in enumerate(actives):
self.gates[j] += torch.sum(act)
if self.epoch % 25 == 0:
for k in range(10):
self.classes[k] += torch.sum(act[targets==k])
self.heatmap[k, j] += torch.sum(act[targets==k]).data[0]
self.numbatches += 1
def getoutput(self):
if self.epoch % 25 == 0:
return([{k: self.gates[k].data.cpu().numpy()[0] / 10000 for k in self.gates},
{k: self.classes[k].data.cpu().numpy()[0] / 1000 / np.sum(self.numblocks) for k in self.classes},
self.heatmap.cpu().numpy() / 1000])
else:
return([{k: self.gates[k].data.cpu().numpy()[0] / 10000 for k in self.gates}])
class ActivationAccum_img():
def __init__(self, epoch):
self.numblocks = [3,4,23,3]
self.gates = {i: 0 for i in range(np.sum(self.numblocks))}
self.classes = {i: 0 for i in range(1000)}
self.numbatches = 0
self.epoch = epoch
if epoch in [30, 60, 99,149]:
self.heatmap = torch.cuda.FloatTensor(len(self.classes), len(self.gates))
self.heatmap[:, :] = 0
def accumulate(self, actives, targets, target_rates):
for j, act in enumerate(actives):
if target_rates[j] < 1:
self.gates[j] += torch.sum(act)
else:
self.gates[j] += targets.size(0)
if self.epoch in [30, 60, 99, 149]:
for k in range(1000):
if target_rates[j] < 1:
self.classes[k] += torch.sum(act[targets==k]).data[0]
self.heatmap[k, j] += torch.sum(act[targets==k]).data[0]
else:
self.classes[k] += torch.sum(targets==k).data[0]
self.heatmap[k, j] += torch.sum(targets==k).data[0]
self.numbatches += 1
def getoutput(self):
for k in list(self.gates.keys()):
if type(self.gates[k]) != int:
self.gates[k] = self.gates[k].data.cpu().numpy()[0]
if self.epoch in [30, 60, 99, 149]:
return([{k: self.gates[k] / 50000 for k in self.gates},
{k: self.classes[k] / 50 / np.sum(self.numblocks) for k in self.classes},
self.heatmap.cpu().numpy() / 50])
else:
return([{k: self.gates[k] / 50000 for k in self.gates}])