-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn_nets.py
55 lines (46 loc) · 1.9 KB
/
cnn_nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from torchvision import models
import torch.nn as nn
import torch.nn.functional as F
class LENET(nn.Module):
def __init__(self, n_classes):
super(LENET, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=(5, 5))
self.conv2 = nn.Conv2d(16, 32, kernel_size=(5, 5))
self.conv3 = nn.Conv2d(32, 64, kernel_size=(5, 5))
#self.conv4 = nn.Conv2d(64, 128, kernel_size=(5, 5))
self.linear1 = nn.Linear(64 * 24 * 24, 120)
self.linear2 = nn.Linear(120, 84)
self.linear3 = nn.Linear(84, n_classes)
def forward(self, x):
"""
Args:
x of shape (batch_size, 1, 28, 28): Input images.
Returns:
y of shape (batch_size, 10): Outputs of the network.
"""
x = F.max_pool2d(F.relu(self.conv1(x)), kernel_size=2, stride=2)
x = F.max_pool2d(F.relu(self.conv2(x)), kernel_size=2, stride=2)
x = F.max_pool2d(F.relu(self.conv3(x)), kernel_size=2, stride=2)
#x = F.max_pool2d(F.relu(self.conv4(x)), kernel_size=2, stride=2)
x = x.view(-1, 64 * 24 * 24)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class RESNET34(nn.Module):
def __init__(self, n_classes):
super(RESNET34, self).__init__()
self.model_ft = models.resnet34(pretrained=False)
num_ftrs = self.model_ft.fc.in_features
self.model_ft.fc = nn.Linear(num_ftrs, n_classes)
def forward(self, x):
return self.model_ft(x)
class ALEXNET(nn.Module):
def __init__(self, n_classes):
super(ALEXNET, self).__init__()
self.model_ft = models.alexnet(pretrained=False)
num_ftrs = self.model_ft.classifier[4].out_features
#self.model_ft.fc = nn.Linear(num_ftrs, n_classes)
self.model_ft.classifier[6] = nn.Linear(num_ftrs, n_classes)
def forward(self, x):
return self.model_ft(x)