-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcss_em.py
570 lines (447 loc) · 19.4 KB
/
css_em.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import sys
import copy
import pdb
import numpy as np
import networkx as nx
import npkmeans as km
import blockmodels as bm
import grouping_distance as gd
def calculate_likelihood(data, groups, G, n, k):
Po1e0 = np.zeros((k,)*3) # p(o=1,e=0)
Po1e1 = np.zeros((k,)*3) # p(o=1,e=1)
counts = {0:np.zeros((k,)*3), # observations for Po1e0
1:np.zeros((k,)*3)} # observations for Po1e1
Pe0 = np.zeros((k,)*3) # p(e=0)
Pe1 = np.zeros((k,)*3) # p(e=1)
# Iterate over every observation
for o_ijk in bm.ndindex(data.shape):
# The elements are Perceiver, Sender, Receiver, to the last two
# elements form the 2D edge
e = o_ijk[1:]
# This is the Block to the which the perceptions belongs --
# Just the groups of the three elements IN the perception.
B = tuple(groups[list(o_ijk)])
# sum_edge sum_people obs*p(obs) (by block)
Po1e0[B] += data[o_ijk]*(1-G[e]) # p(o=1,e=0) += obs_ijk*p(e_jk=0)
Po1e1[B] += data[o_ijk]*G[e] # p(o=1,e=1) += obs_ijk*p(e_jk=1)
# Is this right?
counts[data[o_ijk]][B] += 1
Pe0[B] += (1-G[e]) # p(e_jk=0) += p_i(e_jk=0)
Pe1[B] += G[e] # p(e_jk=1) += p_i(e_jk=0)
likelihood = {0:Po1e0/Pe0, # p(o=1|e=0) = p(o=1,e=0)/p(e=0)
1:Po1e1/Pe1} # p(o=1|e=1) = p(o=1,e=1)/p(e=1)
# If n_A = 0, we'll have /0 errors in likelihood --
# replace them as 0?
for i in [0,1]:
likelihood[i][np.isnan(likelihood[i])] = np.mean(likelihood[i][~np.isnan(likelihood[i])])
# Smoothing -- an attempt.
likelihood[i][likelihood[i] < .1] = 0.1
likelihood[i][likelihood[i] > .9] = 0.9
#likelihood[i][counts[i] == 0] = np.mean(likelihood[i][counts[i]!=0])
#.1 # Pseudocounts, for no data
# OR, should it be -- um, the average for the accuracy of the OTHER
# observed groups? Probably a better guess.
# # HACKED -- is it an identifiability problem?
# if i:
# likelihood[i][likelihood[i] < .5] = .51
# else:
# likelihood[i][likelihood[i] >= .5] = .49
# DANGER: ALSO -- what do I do about ... lack of observations?
# pseudocounts?
return likelihood
def calculate_posterior(data, groups, Po1_e, p, N, k):
POe0 = np.ones((N,N)) # p(O,e=0)
POe1 = np.ones((N,N)) # p(O,e=1)
for o_ijk in bm.ndindex(data.shape):
e = o_ijk[1:]
B = tuple(groups[list(o_ijk)])
# p(O|e=0) p(o_ijk=1 | e=0 ; B) p(o_ijk=0 | e=0 ; B)
POe0[e] *= Po1_e[0][B] if data[o_ijk] else (1-Po1_e[0][B])
# p(O|e=1) p(o_ijk=1 | e=1 ; B) p(o_ijk=0 | e=1 ; B)
POe1[e] *= Po1_e[1][B] if data[o_ijk] else (1-Po1_e[1][B])
for e in bm.ndindex((N,N)):
# p(e=1,O) = p(O|e=1)*p(e=1)
B = tuple(groups[list(e)]) # YEAH? This went from 3d->2d blocks ...
POe0[e] *= (1-p[B]) # p(e=0)
POe1[e] *= p[B] # p(e=1)
#print "POe0: ", np.mean(POe0)
#print "POe1: ", np.mean(POe1)
#print 'likelihood[0]: \n', likelihood[0]
#print 'likelihood[1]: \n', likelihood[1]
# p(e=1|O) = p(e=1,O)/sum_e(p(e=?,O)) = p(e=1,O)/(p(e=1,O) + p(e=0,O))
return POe1/(POe1 + POe0)
# POe0 = np.zeros((N,N)) # p(O,e=0)
# POe1 = np.zeros((N,N)) # p(O,e=1)
#
# for o_ijk in bm.ndindex(data.shape):
#
# e = o_ijk[1:]
# B = tuple(groups[list(o_ijk)])
# # p(O|e=0) p(o_ijk=1 | e=0 ; B) p(o_ijk=0 | e=0 ; B)
# POe0[e] += np.log(Po1_e[0][B]) if data[o_ijk] else np.log(1-Po1_e[0][B])
# # p(O|e=1) p(o_ijk=1 | e=1 ; B) p(o_ijk=0 | e=1 ; B)
# POe1[e] += np.log(Po1_e[1][B]) if data[o_ijk] else np.log(1-Po1_e[1][B])
#
# for e in bm.ndindex((N,N)):
#
# # p(e=1,O) = p(O|e=1)*p(e=1)
# B = tuple(groups[list(e)]) # YEAH? This went from 3d->2d blocks ...
# POe0[e] += np.log(1-p[B]) # p(e=0)
# POe1[e] += np.log( p[B]) # p(e=1)
#
# # p(e=1|O) = p(e=1,O)/sum_e(p(e=?,O)) = p(e=1,O)/(p(e=1,O) + p(e=0,O))
# #return POe1/(POe1 + POe0)
# return 1/(np.exp(POe0 - POe1) + 1)
def count_errors(data_orig, best_guess_orig, groups_orig, k, indices=None):
""" Counts true/false positive/negatives for each cluster-tuple.
Takes the observations, the best_guess, and the group assignments
"""
data = copy.copy(data_orig)
groups = copy.copy(groups_orig)
best_guess = copy.copy(best_guess_orig)
# DANGER
# DO I NEED TO COPY THE DATA?
if indices:# and g.ndim==3:
#print 'YES THERE ARE INDICES'
other_indices = [i for i in range(data.shape[1]) if not i in indices]
new_indices = np.array(indices + other_indices)
# Reshuffles the matrices so that the first elems are the samples
data = data[:,new_indices,:]
data = data[:,:,new_indices]
best_guess = best_guess[:,new_indices]
best_guess = best_guess[new_indices,:]
groups = groups[new_indices]
#print new_indices
# The structures that will hold the accuracy counts
tp = np.zeros((k,)*3)
fp = np.zeros((k,)*3)
tn = np.zeros((k,)*3)
fn = np.zeros((k,)*3)
# Perceiver, Sender, Receiver
for p, i, j in bm.ndindex(data.shape):
# The Truth (we're assuming)
t = best_guess[i,j]
# The Observation
o = data[p,i,j]
# The node-group index tuple
gix = tuple(groups[[p, i, j]])
if t and o:
tp[gix] += 1
elif not t and o:
fp[gix] += 1
elif not t and not o:
tn[gix] += 1
elif t and not o:
fn[gix] += 1
else:
raise Exception("Bottomed out of cases for observations")
return tp, fp, tn, fn
def estimate_error_rates(data_orig, best_guess_orig, groups_orig, k, indices=None):
# Now this just calls it directly -- avoids having to nest things awkwardly
tp, fp, tn, fn = count_errors(data_orig, best_guess_orig, groups_orig, k, indices=indices)
# # P(false_pos) = P(edge=0 | view = 1) # ... yeah? no -- no.
# # = c(e=0,v=1)/c(v=1)
# # = fp/(tp + fp)
#
# pfp = fp/(tp + fp)
# pfn = fn/(tn + fn)
# P(false_pos) = P(view = 1 | edge = 0)
# = c(e=0,v=1)/c(e=0)
# = fp/(tn + fp)
pfp = fp/(tn + fp)
pfn = fn/(fn + tp)
# Div by 0 => numerator is 0 too
pfp[np.isnan(pfp)] = 0.0
pfn[np.isnan(pfn)] = 0.0
# Trying to enforce an identifiability constraint ...
# but a little arbitrarily
#pfp[pfp >= .5] = 0.05
#pfn[pfn >= .5] = 0.05
return pfp, pfn
def guess(data, i, j, pfp, pfn, groups, p):
# Preparing to build up the values:
# P(obs | edge), P(obs | no edge)
p1, p0 = 1, 1
for perceiver in range(data.shape[0]):
gix = tuple(groups[[perceiver, i, j]])
# P(all observations | edge/no edge)
p1 *= pfn[gix] if data[gix]==0 else 1-pfp[gix]
p0 *= pfp[gix] if data[gix]==1 else 1-pfn[gix]
# Multiply by the a priori possibility of the edge,
ij = tuple(groups[[i,j]])
# based on the blocks it would span, to finally get
p1 *= p[ij] # = P(edge, obs)
p0 *= 1 - p[ij] # = P(!edge, obs)
# We want the posterior -- but we have all the elements.
# pIeloI = p1/(p1+p0) # P(edge|obs) = P(edge, obs)/(P(!e,o) + P(e,o))
# Trying to write p(e|o) only using alphanumerics. Kinda works, right?
# return pIeloI
return (p1 > p0) + 0 # bool => int
def accuracy(x, y):
tn = np.sum((x+y)==0)/np.sum((1-y)**2)
tp = np.sum((x+y)==2)/np.sum(y)
return tn, tp
def em(data, k=2, indices=None, G_true=None, num_samples=5, iterations=20, corrected=True):
n = data.shape[0] # The number of samples
N = data.shape[1] # The size of the network being sampled
G = bm.initial_condition(data)
G_old = copy.copy(G)
revert_indices = None
if indices:
other_indices = [i for i in range(data.shape[1]) if not i in indices]
new_indices = np.array(indices + other_indices)
# Reshuffles the matrices so that the first elems are the samples
data = data[:,new_indices,:]
# Because numpy is INSANE, I have to permute the dimensions 1 by 1.
data = data[:,:,new_indices]
# Cast so that it has list's 'index' function.
ni = list(new_indices)
revert_indices = np.array([ni.index(i) for i in range(data.shape[1])])
if not G_true is None:
G_true = G_true[new_indices,:]
G_true = G_true[:,new_indices]
old_groups = np.random.randint(0,2,N)
truth, liks = bm.blockmodel(G_true, 2)
fixed_groups = truth.groups
# b = bm.blockmodel(data, k, iterations=iterations,
# corrected=corrected,
# indices=indices)
em_iterations = 0
est_diffs = []
true_diffs = []
em_lkhds = []
accs = []
group_diff = []
values = []
values.append(np.ravel(G))
groups = []
probs = []
liks = []
modliks = []
models = []
while True:
sys.stdout.write("EM iteration #{} \r".format(em_iterations))
sys.stdout.flush()
em_iterations += 1
b, lkhds = bm.blockmodel(G, k, iterations=iterations, corrected=corrected)
likelihood = calculate_likelihood(data, b.groups, G, n, k)
G = calculate_posterior(data, b.groups, likelihood, b.p, N, k)
liks.append(likelihood)
probs.append(np.ravel(b.p))
modliks.append(sum([G[e]*np.log(G[e]) for e in bm.ndindex((N,N))]))
groups.append(b.groups)
#likelihood = calculate_likelihood(data, fixed_groups, G, n, k)#, indices)
#G = calculate_posterior(data, fixed_groups, likelihood, b.p, N, k)#, indices)
# Actually it's good if it treats it as UNdirected -- I'm only
# afraid of nodes that have NO context
Gnx = nx.from_numpy_matrix(np.round(G))#, create_using=nx.DiGraph())
print '#CC: ', nx.number_connected_components(Gnx), " "
est_diff = np.sum(np.abs(G - G_old))
group_diff.append(gd.d2(b.groups, old_groups))
est_diffs.append(est_diff)
true_diffs.append(np.sum(np.abs(G - G_true)))
em_lkhds.append(b.calculate_likelihood())
accs.append(accuracy(np.round(G), G_true))
#groups.append(b.groups)
old_groups = copy.copy(b.groups)
values.append(np.ravel(G))
models.append(b)
if est_diff < 1e-1 or em_iterations > 100:
b, lkhds = bm.blockmodel(np.round(G), k,
iterations=iterations,
corrected=corrected)#,
#indices=indices)
if not revert_indices is None:
b.groups = b.groups[revert_indices]
b.g = b.g[revert_indices,:]
b.g = b.g[:,revert_indices]
G = G[revert_indices,:]
G = G[:,revert_indices]
return np.round(G), b, est_diffs, true_diffs, em_lkhds, accs, group_diff, values, groups, probs, liks, modliks, models
else:
G_old = copy.copy(G)
def test_count_errors(n, k, e):
# em.test_count_errors(20, 2, np.array([[1,2],[3,4]]))
# I want to see if ... fp + fn == e
# first ... necessary?
e = copy.copy(e)
# 1) Make a PERFECT model,
x = bm.blocked_matrix(n, k)
parts = bm.partition(n, k)
# [[1,2,3],[4,5,6]] => [0,0,0,1,1,1 ...]
groups = np.concatenate([[i]*len(parts[i]) for i in range(k)])
# 2) Copy it, for the perceptions
y = copy.copy(x)
# Have two people, with the same views ... yes, counts double.
#x = np.array(x, ndmin=3) # So the indexing over 'perceivers' works right
x = np.array([x, x]) # in case I want several observers
# 3) Turn the NUMBERS of errors into actual coordinates
edges = list(bm.ndindex((n,)*e.ndim))
eix = np.zeros(y.shape, dtype=np.bool)
for edge in edges:
# The groups of the nodes involved in the edge ('Group IndeX')
gix = tuple(groups[list(edge)])
# If there are errors left to disperse from block gix,
if e[gix]:
# Mark the index for the error
eix[edge] = True
# And reduce the number of remaining errors to distribute
e[gix] -= 1
# 4) Flip the bits on the error spots
y[eix] = ((1-y)**2)[eix]
print 'y: \n', np.int64(y)
# 4) See if count errors' recovers them.
# data, best_guess, groups, k
out = count_errors(x, y, groups, k)
return out
def test_estimate_error_rates():
pass
def test_guess():
pass
def faulty_observations(indices=None, N=20, simple=True):
# CONCOCT: ... some cases for the likelihood/posterior TO WHICH I know
# the answers. So ... Ah -- so -- DRAW from them. Directly. Right.
# I want ... p(e|o) AND p(o|e) ... etc. Right. And for NOW, have it be ONE
# group. So -- p(e=1) = bm.blocked_matrix(20, 2, on=1, off=.1)
# p(o=1|e=1) = .9 #, .8 for groups 1, 2. (NO -)
if not indices:
indices = range(0,20,2)
truth = bm.blocked_matrix(N, 2, on=.9, off=.1) # => ~.8 .1 b/c diagonal
groups = np.zeros(N)
groups[10:] = 1
pfp = np.array([ [ [.1, .2],
[.2, .1] ],
[ [.2, .1],
[.1, .2] ]
])
pfn = np.array([ [ [.0, .1],
[.1, .0] ],
[ [.1, .0],
[.0, .1] ]
])
all_obs = []
# generate data
for i in indices:#range(10):
obs = copy.copy(truth)
if simple:
obs = bm.blocked_matrix(N,2)
else:
for ix in bm.ndindex((N,N)):
B = tuple(groups[[i, ix[0], ix[1]]])
if obs[ix]:
if np.random.random() < pfn[B]:
obs[ix] = 0
else:
if np.random.random() < pfp[B]:
obs[ix] = 1
all_obs.append(obs)
return np.array(all_obs), pfp, pfn, truth, groups
def permute(x, indices):
if x.ndim==2:
x = x[indices,:]
x = x[:,indices]
elif x.ndim==3:
# NOT the first index
x = x[:,indices,:]
x = x[:,:,indices]
return x
def test_posterior():
pass
if __name__ == "__main__":
# Putting it down here is particularly important because it doesn't play
# at all with pypy, so now the OTHER EM functions can be imported
# (via the script) without throwing that wrench.
#from matplotlib import pyplot as plt
# all data, idem, consensus, idem, self-reported, idem
advice, friendship, ca, cf, sa, sf = bm.read_css()
# print 'yeah? ', np.all([np.all(cf==X[i]) for i in range(len(X))])
# raw_input()
# G_hat, b = em(X, np.random.randint(2,size=(21,21)), k=2, num_samples=5, iterations=20, corrected=True)
Y, pfp, pfn, truth, y_groups = faulty_observations(indices=range(20), simple=False)
likelihood = calculate_likelihood(Y, y_groups, truth, 20, 2)
p = np.array([[.8,.1],[.1,.8]])
posterior = calculate_posterior(Y, y_groups, likelihood, p, 20, 2)
#print 'posterior: \n', np.int64(np.round(posterior))
#sys.exit()
X_true = bm.blocked_matrix(20, 2, on=.9, off=.1)
X = [bm.blocked_matrix(20, 2, on=1., off=0.) for i in range(10)]
X += [bm.blocked_matrix(20, 2, on=1., off=0.) for i in range(10)]
X = np.array(X)
indices = range(0,20,1)
new_indices = indices + [i for i in range(20) if not i in indices]
Y, pfp, pfn, truth, y_groups = faulty_observations(indices)
groups = np.zeros(20)
groups[10:] = 1
# p(o=1|e=0/1), i.e. pfp, ptp
lkhd = calculate_likelihood(permute(Y, new_indices),
permute(groups,new_indices),
permute(truth, new_indices), len(groups), 2)
#sys.exit()
indices = range(0,18,1)
connected = [i for i in range(21) if not i in (8, 9, 19)]
f_con = friendship[connected,:,:]
f_con = f_con[:,connected,:]
f_con = f_con[:,:,connected]
cf_con = cf[connected,:]
cf_con = cf_con[:,connected]
cfb, liks = bm.blockmodel(cf_con, 2, iterations=100)
cab, liks = bm.blockmodel(ca, 2, iterations=100)
#cfb.plot()
# pfp_star, pfn_star = estimate_error_rates(f_con[indices], cf_con, cfb.groups, 2, indices=indices)
# graph, model, est_diffs, true_diffs, em_lkhds, accs, group_diffs, values, est_groups, probs, liks, modliks, models = em(f_con[indices], k=2, G_true=cf_con, iterations=100, indices=indices, corrected=False)#X, G_true=bm.blocked_matrix(20,2))#, iterations=100)
# pfp_hat, pfn_hat = estimate_error_rates(f_con[indices], graph, est_groups[-1], 2, indices=indices)
pfp_star, pfn_star = estimate_error_rates(advice[indices], ca, cab.groups, 2, indices=indices)
#graph, model, est_diffs, true_diffs, em_lkhds, accs, group_diffs, values, est_groups, probs, liks, modliks, models
stuff = em(advice[indices], k=2, G_true=ca, iterations=100, indices=indices)#X, G_true=bm.blocked_matrix(20,2))#, iterations=100)
pfp_hat, pfn_hat = estimate_error_rates(advice[indices], graph, est_groups[-1], 2, indices=indices)
# pfp_star, pfn_star = estimate_error_rates(Y, truth, y_groups, 2, indices=indices)
# graph, model, est_diffs, true_diffs, em_lkhds, accs, group_diffs, values, est_groups, probs, liks = em(Y[indices], G_true=truth, indices=indices, iterations=100)#, iterations=100)
# pfp_hat, pfn_hat = estimate_error_rates(Y, truth, est_groups[-1], 2, indices=indices)
#graph, model, est_diffs, true_diffs, em_lkhds, accs, group_diffs, values, groups, probs = em(X, G_true=bm.blocked_matrix(20,2), indices=indices)#, iterations=100)
# NOW AGAIN, for advice ... but also KEEP EVERYTHING
# accs = []
# bcf = bm.blockmodel(cf, k=2, corrected=True)
# for num in range(21):
# print 'num: ', num
# G_hat, b, nits = em(friendship[range(num)], k=2, iterations=100, corrected=True)
# accs.append(accuracy(np.round(G_hat), cf))
# print 'accuracy after: ', accuracy(np.round(G_hat), cf)
# print 'bG.p: \n', b.p
# print 'bcf.p: \n', bcf.p
#
# plt.plot([i[0] for i in accs])
# plt.plot([i[1] for i in accs])
# plt.plot([np.prod(i) for i in accs])
# plt.ylim([-.1,1.1])
# plt.show()
#
# vals = []
# for e in bm.ndindex((18,18)):
# if cf_con[e]:
# vals.append(np.mean(f_con[:,e[0],e[1]]))
# plt.hist(vals)
# plt.show()
# THIS DOESN"T WORK PARTICULARLY WELL
# print 'distance: ', np.sum(np.abs(G_hat-cf))
# for t in np.linspace(0,1, 10):
# print 't: ', t, ' distance: ', np.sum(np.abs((G_hat > t)+0 - cf))
# data = {'a': [advice, ca], 'f': [friendship, cf]}
# # all_data, consensus, k, num_samples, iterations, corrected
# defaults = ('f', 2, 10, 20, 1)
#
# v = sys.argv[1:]
# args = [v[i] if len(v) > i else defaults[i] for i in range(len(defaults))]
# #print 'args: ', args
# args = data[args[0]] + list(np.int64(args[1:])) # array cast [str]->[int]
#
# # best_guess, model, pfp, pfn =
# # em(friendship, cf, k=3, num_samples=10, iterations=20)
# best_guess, b, pfp, pfn = em(*args)
#
# print 'final accuracy: {:.3f}'.format(np.sum(best_guess == args[1])/441.)
# print 'pfp: \n', pfp
# print 'pfn: \n', pfn
# print 'b.p: \n', b.p
# print 'b.m: \n', b.m
# print 'b.groups: ', b.groups
# b.plot()