-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmanager.py
226 lines (202 loc) · 9.01 KB
/
manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import sys
import time
import random
import uuid
from collections import defaultdict
import cloudpickle
import redis
import lz4.frame
import pandas as pd
from tqdm.auto import tqdm
from utils import (compress_and_dumps,
decompress_and_loads)
class Manager(object):
def __init__(self, redis_url=None, qname_results=None, qname_tasks=None):
if not redis_url:
try:
from config import REDIS_URL
redis_url = REDIS_URL
except ImportError as e:
raise Exception(
"You didn't specify a redis url, and I couldn't find one in config.REDIS_URL")
self.redis_url = redis_url
self.r = redis.Redis.from_url(redis_url)
self.user = os.getenv("USER")
self.qname_results = qname_results if qname_results else self.user+":results"
self.qname_tasks = qname_tasks if qname_tasks else self.user+":tasks"
self.remote_results = []
def __repr__(self):
def valid(x):
return (x["flags"]!="N") and (x["name"].startswith(self.user))
return "<Manager: broker='{}', workers={}>".format(
self.redis_url,
sum(map(valid,self.r.client_list())),
)
def get_worker_info(self, include_stats=False, min_delay=0.3):
def valid(x):
return (x["flags"]!="N") and (x["name"].startswith(self.user))
df = pd.DataFrame([c for c in self.r.client_list() if valid(c)])
if df.empty: return pd.DataFrame()
df = df[["addr", "name", "age", "id", "idle"]]
if not include_stats:
return df.set_index("name")
def get_stats(*args):
import psutil
p = psutil.Process()
t1 = time.time()
cpu_worker = p.cpu_times()
cpu_node = psutil.cpu_times()
net1 = psutil.net_io_counters()
disk1 = psutil.disk_io_counters()
meta = get_worker().worker_meta
return dict(
name=meta["worker_name"],
worker_busy = meta["busy"],
worker_tasks = meta["total_tasks"],
worker_read_bytes = meta["total_read_bytes"],
worker_write_bytes = meta["total_write_bytes"],
worker_time_elapsed = meta["total_time_elapsed"],
worker_cpu_time = cpu_worker.user + cpu_worker.system,
node_t=t1,
worker_mem_used=p.memory_info()[0],
node_read_bytes = disk1.read_bytes,
node_write_bytes = disk1.write_bytes,
node_recv_bytes = net1.bytes_recv,
node_sent_bytes = net1.bytes_sent,
node_cpu_time = cpu_node.user + cpu_node.nice + cpu_node.system + cpu_node.iowait,
node_iowait_time = cpu_node.iowait,
)
qname_in = self.user+":pubsubin"
qname_out = self.user+":pubsubout"
pipe = self.r.pipeline()
pipe.delete(qname_in,qname_out)
pipe.publish(qname_in, compress_and_dumps(get_stats))
pipe.execute()
query_time = time.time()
time.sleep(min_delay)
pipe = self.r.pipeline()
pipe.lrange(qname_out,0,-1)
pipe.delete(qname_out)
results = [decompress_and_loads(r) for r in pipe.execute()[0]]
df["node"] = df["name"].str.split("__").str[1]
df["query_t"] = query_time
dfextra = pd.DataFrame(results)
if not dfextra.empty:
df = df.merge(dfextra, on="name", how="left").set_index("name")
failed = df["node_t"].isna().sum()
else:
failed = len(df)
if failed > 0:
print("Did not hear back from {} workers in time".format(failed))
return df
def get_broker_info(self):
return self.r.info("all")
def local_map(self, func, vargs, progress_bar=True):
return list(map(func, tqdm(vargs, disable=not progress_bar)))
def clear_queues(self):
self.r.delete(self.qname_tasks)
def stop_all_workers(self, **kwargs):
# kill pubsub threads first
self.r.client_kill_filter(_type="pubsub")
self.r.client_kill_filter(_type="normal")
# self.remote_map(lambda x: x, ["STOP"]*len(self.get_worker_info()), **kwargs)
def remote_map(self, func, vargs, return_metadata=True,
reuse_chunking=False, worker_names=[],
shuffle_chunks=False,
skip_payload_check=False,
blocking=True,
progress_bar=True,
):
# If user tries to send more than 2MB (compressed) to each worker, stop them!
if not skip_payload_check and len(vargs):
compressed_size_mb = len(compress_and_dumps([func, vargs[0]]))/1e6
if compressed_size_mb > 2:
raise RuntimeError(
"You're trying to send {:.1f}MB (more than 2MB) through the server. "
"This will slow things down. Please check your function and arguments.".format(
compressed_size_mb)
)
# Remove leftover/errored tasks
# FIXME, want to clean up, but this clobbers multiple non-blocking maps!
# actually do we need to clean up?
# self.clear_queues()
vargs, worker_names = self.optimize_chunking(
vargs, worker_names, reuse_chunking=reuse_chunking, shuffle_chunks=shuffle_chunks)
task_id = uuid.uuid4().hex[:16] # 32 bytes to keep it short and simple
vals = [compress_and_dumps([task_id, job_num, func, args]) for job_num,args in enumerate(vargs)]
# If user specified enough worker names to cover all tasks we will submit,
# then submit them to those workers specifically, otherwise
# submit to the general task queue
if len(worker_names) >= len(vals):
pipe = self.r.pipeline()
for worker_name, val in zip(worker_names, vals):
self.r.lpush("{}:tasks".format(worker_name), val)
pipe.execute()
else:
self.r.lpush(self.qname_tasks, *vals)
qname_results_tid = self.qname_results+":"+task_id
def results_generator(self):
# Read results from broker
results = []
ntasks = len(vargs)
bar = tqdm(total=len(vargs), disable=(not progress_bar or not blocking))
npolls = 0
while len(results) < ntasks:
tofetch = self.r.llen(qname_results_tid)
# avoid spamming pops requests too fast
if tofetch == 0:
if npolls < 5:
time.sleep(0.005*npolls**2)
else:
time.sleep(0.20)
npolls += 1
continue
pipe = self.r.pipeline()
pipe.lrange(qname_results_tid, 0, -1)
pipe.delete(qname_results_tid)
popchunk = pipe.execute()[0]
for pc in popchunk[::-1]:
if pc is None:
continue
res = decompress_and_loads(pc)
if not return_metadata:
res = res["result"]
results.append(res)
yield res
bar.update(1)
bar.close()
self.maybe_retain_results(results, reuse_chunking)
if blocking:
return list(results_generator(self))
else:
return results_generator(self)
def maybe_retain_results(self, results, reuse_chunking):
if not reuse_chunking: return
if not len(results): return
if not (type(results[0]) == dict): return
remote_results = []
for result in results:
remote_results.append(dict(worker_name=result["worker_name"],args=result["args"]))
self.remote_results = remote_results
def optimize_chunking(self, vargs, worker_names, reuse_chunking=False, shuffle_chunks=False):
# If the previous chunking matches the current chunking, then
# use the old chunks and corresponding worker names to make use of
# cached branches
if reuse_chunking and self.remote_results:
old_vargs = [r["args"] for r in self.remote_results]
old_worker_names = [r["worker_name"] for r in self.remote_results]
if sorted(vargs) == sorted(old_vargs):
vargs = old_vargs
worker_names = old_worker_names
print("Current chunking matches old chunking, so we will re-use the old worker ordering "
"to make use of caching")
# Ability to shuffle chunks in case consecutive jobs land on the same disk and compete
if shuffle_chunks:
if len(worker_names) >= len(vargs):
combined = list(zip(vargs, worker_names))
random.shuffle(combined)
vargs, worker_names = zip(*combined)
else:
random.shuffle(vargs)
return vargs, worker_names