-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.lua
56 lines (51 loc) · 1.63 KB
/
test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
require 'torch'
require 'loader'
require 'nn'
torch.setdefaulttensortype('torch.FloatTensor')
local cmd = torch.CmdLine()
cmd:option('-mode', 'test', 'Test mode')
cmd:option('-pretrained', true, 'Load pretrained weights')
cmd:option('-modelName', './models/epoch20.t7', 'Path to pre-trained model to load')
cmd:option('-backend', 'nn', 'Set to cudnn to use GPU')
cmd:option('-batchSize', 128, 'Batch size in training')
cmd:option('-numHidden', 6, 'Number of hidden layers')
cmd:option('-config', 'config.lua', 'Configuration file containing architecture params')
cmd:text()
local opt = cmd:parse(arg)
print(opt)
local cfg = paths.dofile(opt.config)
if opt.backend == 'nn' then
backend = nn
else
require 'cudnn'
backend = cudnn
end
local function test()
local model = torch.load(opt.modelName)
model:remove() -- replace LogSoftmax with Softmax
model:add(backend.SoftMax())
print("Retrieving test set...")
local loader = Loader.new(model, cfg, "test")
local X,y = loader:getDataset()
print("Loaded test set of "..X:size(1).." instances.")
local num = X:size(1)
correct = num
scores = {0,0,0,0,0}
totals = {0,0,0,0,0}
print("Testing network...")
for i = 1, num do
local output = model:forward(X[i]:view(1,X[i]:size(1),X[i]:size(2)))
k,class = torch.max(output,1)
totals[class[1]] = totals[class[1]]+1
if class[1] ~= y[i] then
scores[class[1]] = scores[class[1]] + 1
correct = correct-1
end
end
print("% Overall Accuracy: "..(correct/num)*100.0)
print("% Accuracies By Genre: ")
for j=1, #scores do
print(cfg.genres[j].." score: "..((totals[j]-scores[j])/totals[j])*100)
end
end
test()