This repository hosts the HIP port of Caffe (or hipCaffe, for short). For details on HIP, please refer here. This HIP-ported framework is able to target both AMD ROCm and Nvidia CUDA devices from the same source code. Hardware-specific optimized library calls are also supported within this codebase.
- For ROCm hardware requirements, see here
- For ROCm software requirements, see here
For further background information on ROCm, refer here
Installing ROCm Debian packages:
PKG_REPO="http://repo.radeon.com/rocm/apt/debian/"
wget -qO - $PKG_REPO/rocm.gpg.key | sudo apt-key add -
sudo sh -c "echo deb [arch=amd64] $PKG_REPO xenial main > /etc/apt/sources.list.d/rocm.list"
sudo apt-get update
sudo apt-get install rocm rocm-utils rocm-opencl rocm-opencl-dev rocm-profiler cxlactivitylogger
echo 'export PATH=/opt/rocm/bin:$PATH' >> $HOME/.bashrc
echo 'export LD_LIBRARY_PATH=/opt/rocm/lib:$LD_LIBRARY_PATH' >> $HOME/.bashrc
source $HOME/.bashrc
sudo reboot
Then, verify the installation. Double-check your kernel (at a minimum, you should see "kfd" in the name):
uname -r
In addition, check that you can run the simple HSA vector_copy sample application:
cd /opt/rocm/hsa/sample
make
./vector_copy
Install Caffe dependencies:
sudo apt-get install \
pkg-config \
protobuf-compiler \
libprotobuf-dev \
libleveldb-dev \
libsnappy-dev \
libhdf5-serial-dev \
libatlas-base-dev \
libboost-all-dev \
libgflags-dev \
libgoogle-glog-dev \
liblmdb-dev \
python-numpy python-scipy python3-dev python-yaml python-pip \
libopencv-dev \
libfftw3-dev \
libelf-dev
Install the necessary ROCm compute libraries:
sudo apt-get install rocm-libs miopen-hip miopengemm
Clone hipCaffe:
git clone https://github.com/ROCmSoftwarePlatform/hipCaffe.git
cd hipCaffe
You may need to modify the Makefile.config file for your own installation. Then, build it:
cp ./Makefile.config.example ./Makefile.config
make
To improve build time, consider invoking parallel make with the "-j$(nproc)" flag.
Run the following commands to perform unit testing of different components of Caffe.
make test
./build/test/test_all.testbin
Steps:
./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh
Steps:
./data/cifar10/get_cifar10.sh
./examples/cifar10/create_cifar10.sh
./build/tools/caffe train --solver=examples/cifar10/cifar10_quick_solver.prototxt
Steps:
./data/ilsvrc12/get_ilsvrc_aux.sh
./scripts/download_model_binary.py models/bvlc_reference_caffenet
./build/examples/cpp_classification/classification.bin \
models/bvlc_reference_caffenet/deploy.prototxt \
models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \
data/ilsvrc12/imagenet_mean.binaryproto \
data/ilsvrc12/synset_words.txt \
examples/images/cat.jpg
Sometimes when training with multiple GPUs, we hit this type of error signature:
*** SIGSEGV (@0x0) received by PID 57122 (TID 0x7fd841500b80) from PID 0; stack trace: ***
@ 0x7fd8409a1390 (unknown)
@ 0x7fd8400a71f7 (unknown)
@ 0x7fd840515263 (unknown)
@ 0x7fd81f5ef907 UnpinnedCopyEngine::CopyHostToDevice()
@ 0x7fd81f5d3bb9 HSACopy::syncCopyExt()
@ 0x7fd81f5d28bc Kalmar::HSAQueue::copy_ext()
@ 0x7fd8410dba5b ihipStream_t::locked_copySync()
@ 0x7fd8411030bf hipMemcpy
@ 0x6cfd43 caffe::caffe_gpu_rng_uniform()
@ 0x5a32ba caffe::DropoutLayer<>::Forward_gpu()
@ 0x430bbf caffe::Layer<>::Forward()
@ 0x6fefe7 caffe::Net<>::ForwardFromTo()
@ 0x6feeff caffe::Net<>::Forward()
@ 0x801e8c caffe::Solver<>::Step()
@ 0x8015c3 caffe::Solver<>::Solve()
@ 0x71a277 caffe::P2PSync<>::Run()
@ 0x42dcbc train()
See this comment.
In short, here's the temporary workaround:
export HCC_UNPINNED_COPY_MODE=2