-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_vq.py
242 lines (200 loc) · 9.5 KB
/
train_vq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import cv2
import random
import numpy as np
import torch
import argparse
import time
from shutil import copyfile
from torch.utils.data import DataLoader
from data.dataloader_vqgan import load_dataset
from utils.evaluation import get_IoU
from utils.logger import setup_logger
from utils.utils import Config, Progbar, to_cuda, stitch_images
from utils.utils import get_lr_schedule_with_steps, torch_init_model
from taming_src.vqperceptual import VQLPIPSWithDiscriminator, adopt_weight
from taming_src.taming_models import VQModel
def restore(ckpt_file, g_model, d_model, g_opt, d_opt):
torch_init_model(g_model, ckpt_file, "g_model")
torch_init_model(d_model, ckpt_file, "d_model")
saving = torch.load(ckpt_file, map_location='cpu')
# if 'optimizer_states' in saving:
# opt_state = saving['optimizer_states']
# # print(opt_state[0])
# g_opt.load_state_dict(opt_state[0])
# d_opt.load_state_dict(opt_state[1])
print(f"Restored from {ckpt_file}")
return g_opt, d_opt
def save(g_model, d_model, m_path, prefix=None, g_opt=None, d_opt=None):
if prefix is not None:
save_path = m_path + "_{}.pth".format(prefix)
else:
save_path = m_path + ".pth"
print('\nsaving {}...\n'.format(save_path))
all_saving = {'g_model': g_model.state_dict(),
'd_model': d_model.state_dict(),
'optimizer_states': [g_opt.state_dict(), d_opt.state_dict()]}
torch.save(all_saving, save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, required=True, help='model checkpoints path')
parser.add_argument('--finetune_path', type=str, required=False, default=None)
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--learn_type', default="mask", type=str)
parser.add_argument('--check_point_path', default="../check_points", type=str)
parser.add_argument('--dataset', default="Kins", type=str)
args = parser.parse_args()
args.path = os.path.join(args.check_point_path, args.path)
config_path = os.path.join(args.path, 'vqgan_{}.yml'.format(args.dataset))
# create checkpoints path if does't exist
if not os.path.exists(args.path):
os.makedirs(args.path)
# copy config template if does't exist
if not os.path.exists(config_path):
copyfile('configs/vqgan_{}.yml'.format(args.dataset), config_path)
# load config file
config = Config(config_path)
config.path = args.path
# cuda visble devices
local_rank = 0
log_file = 'log-{}.txt'.format(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
if local_rank == 0:
logger = setup_logger(os.path.join(args.path, 'logs'), logfile_name=log_file)
for k in config._dict:
logger.info("{}:{}".format(k, config._dict[k]))
else:
logger = None
# save samples and eval pictures
os.makedirs(os.path.join(args.path, 'samples'), exist_ok=True)
# os.makedirs(os.path.join(args.path, 'eval'), exist_ok=True)
# init device
if torch.cuda.is_available():
config.device = torch.device("cuda")
torch.backends.cudnn.benchmark = True # cudnn auto-tuner
else:
config.device = torch.device("cpu")
cv2.setNumThreads(0)
# initialize random seed
torch.manual_seed(config.seed)
np.random.seed(config.seed)
random.seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
train_dataset, val_dataset = load_dataset(args, config)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=config.batch_size,
num_workers=8,
drop_last=True,
shuffle=True,
collate_fn=train_dataset.collate_fn,
)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=config.batch_size,
num_workers=2,
drop_last=False,
shuffle=False,
collate_fn=val_dataset.collate_fn,
)
sample_iterator = val_dataset.create_iterator(config.sample_size)
g_model = VQModel(config).to(config.device)
d_model = VQLPIPSWithDiscriminator(config.model['params']['lossconfig']['params']).to(config.device)
g_opt = torch.optim.Adam(list(g_model.encoder.parameters()) +
list(g_model.decoder.parameters()) +
list(g_model.quantize.parameters()) +
list(g_model.quant_conv.parameters()) +
list(g_model.post_quant_conv.parameters()),
lr=float(config.g_lr), betas=(0.5, 0.9))
d_opt = torch.optim.Adam(d_model.discriminator.parameters(),
lr=float(config.d_lr), betas=(0.5, 0.9))
d_sche = get_lr_schedule_with_steps(config.decay_type,
d_opt,
drop_steps=config.drop_steps,
gamma=config.drop_gamma)
g_sche = get_lr_schedule_with_steps(config.decay_type,
g_opt,
drop_steps=config.drop_steps,
gamma=config.drop_gamma)
# restore
if args.finetune_path is not None:
g_opt, d_opt = restore(args.finetune_path, g_model, d_model, g_opt, d_opt)
g_model = g_model
d_model = d_model
steps_per_epoch = len(train_dataset) // config.batch_size
iteration = g_model.iteration
epoch = iteration // steps_per_epoch
if local_rank == 0:
logger.info('Start from epoch:{}, iteration:{}'.format(epoch, iteration))
keep_training = True
best_score = {}
while (keep_training):
epoch += 1
stateful_metrics = ['epoch', 'iter', 'g_lr']
if local_rank == 0:
progbar = Progbar(len(train_dataset), max_iters=steps_per_epoch,
width=20, stateful_metrics=stateful_metrics)
else:
progbar = None
for items in train_loader:
g_model.train()
d_model.train()
items = to_cuda(items, config.device)
g_model.iteration += 1
iteration = g_model.iteration
xrec, qloss = g_model.forward(items['mask_crop'])
# opt dis
d_opt.zero_grad()
d_loss = d_model.forward(qloss, items['mask_crop'], xrec, optimizer_idx=1,
global_step=g_model.iteration,
split="train")
d_loss.backward()
d_opt.step()
# opt gen
g_opt.zero_grad()
nll_loss, gan_loss, codebook_loss = d_model.forward(qloss, items['mask_crop'], xrec,
optimizer_idx=0,
global_step=g_model.iteration,
split="train")
disc_factor = adopt_weight(d_model.disc_factor,
g_model.iteration, threshold=d_model.discriminator_iter_start)
d_weight = d_model.calculate_adaptive_weight(nll_loss, gan_loss,
last_layer=g_model.get_last_layer())
g_loss = nll_loss + d_weight * disc_factor * gan_loss + codebook_loss
g_loss.backward()
g_opt.step()
d_sche.step()
g_sche.step()
logs = [("g_loss", g_loss.item()), ("d_loss", d_loss.item()), ("nll_loss", nll_loss.item()),
("d_weight", d_weight.item()), ("gan_loss", d_weight.item() * disc_factor * gan_loss.item()),
("codebook_loss", codebook_loss.item())]
logs = [("epoch", epoch), ("iter", g_model.iteration),
('g_lr', g_sche.get_lr()[0])] + logs
if local_rank == 0:
progbar.add(config.batch_size, values=logs)
if iteration % config.log_iters == 0 and local_rank == 0:
logger.debug(str(logs))
if iteration % config.sample_iters == 0 and local_rank == 0:
g_model.eval()
with torch.no_grad():
items = next(sample_iterator)
items = to_cuda(items, config.device)
fake_img, _ = g_model(items['mask_crop'])
fake_img = fake_img.mean(dim=1, keepdim=True)
fake_img = torch.clamp(fake_img, min=0, max=1)
fake_img = (fake_img > 0.5).to(torch.int64)
IoU = get_IoU(fake_img.long(), items['mask_crop'].long())
show_results = []
show_results.append(fake_img.permute(0, 2, 3, 1))
images = stitch_images(items['mask_crop'].permute(0, 2, 3, 1), show_results, img_per_row=2, mode="L")
mIoU = IoU.mean()
logger.info("\n mIoU: {}".format(mIoU.item()))
sample_name = os.path.join(args.path, 'samples', str(iteration).zfill(7) + ".png")
print('\tsaving sample {}\n'.format(sample_name))
images.save(sample_name)
if iteration % config.save_iters == 0 and local_rank == 0:
save(g_model, d_model, g_model.m_path, prefix='{}'.format(str(iteration)), g_opt=g_opt, d_opt=d_opt)
if iteration >= config.max_iters:
keep_training = False
break
if local_rank == 0:
logger.info('Best score: ' + str(best_score))