-
Notifications
You must be signed in to change notification settings - Fork 121
/
circuit.py
1678 lines (1409 loc) · 69.6 KB
/
circuit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
from __future__ import annotations
from collections import Counter
from collections.abc import Callable, Iterable
from numbers import Number
from typing import Any, Optional, TypeVar, Union
import numpy as np
import oqpy
from sympy import Expr
from braket.circuits import compiler_directives
from braket.circuits.free_parameter import FreeParameter
from braket.circuits.free_parameter_expression import FreeParameterExpression
from braket.circuits.gate import Gate
from braket.circuits.instruction import Instruction
from braket.circuits.measure import Measure
from braket.circuits.moments import Moments, MomentType
from braket.circuits.noise import Noise
from braket.circuits.noise_helpers import (
apply_noise_to_gates,
apply_noise_to_moments,
check_noise_target_gates,
check_noise_target_qubits,
check_noise_target_unitary,
wrap_with_list,
)
from braket.circuits.observable import Observable
from braket.circuits.observables import TensorProduct
from braket.circuits.parameterizable import Parameterizable
from braket.circuits.result_type import (
ObservableParameterResultType,
ObservableResultType,
ResultType,
)
from braket.circuits.serialization import (
IRType,
OpenQASMSerializationProperties,
QubitReferenceType,
SerializationProperties,
)
from braket.circuits.text_diagram_builders.unicode_circuit_diagram import UnicodeCircuitDiagram
from braket.circuits.unitary_calculation import calculate_unitary_big_endian
from braket.default_simulator.openqasm.interpreter import Interpreter
from braket.ir.jaqcd import Program as JaqcdProgram
from braket.ir.openqasm import Program as OpenQasmProgram
from braket.ir.openqasm.program_v1 import io_type
from braket.pulse.ast.qasm_parser import ast_to_qasm
from braket.pulse.frame import Frame
from braket.pulse.pulse_sequence import PulseSequence, _validate_uniqueness
from braket.pulse.waveforms import Waveform
from braket.registers.qubit import QubitInput
from braket.registers.qubit_set import QubitSet, QubitSetInput
SubroutineReturn = TypeVar(
"SubroutineReturn", Iterable[Instruction], Instruction, ResultType, Iterable[ResultType]
)
SubroutineCallable = TypeVar("SubroutineCallable", bound=Callable[..., SubroutineReturn])
AddableTypes = TypeVar("AddableTypes", SubroutineReturn, SubroutineCallable)
class Circuit:
"""A representation of a quantum circuit that contains the instructions to be performed on a
quantum device and the requested result types.
See :mod:`braket.circuits.gates` module for all of the supported instructions.
See :mod:`braket.circuits.result_types` module for all of the supported result types.
`AddableTypes` are `Instruction`, iterable of `Instruction`, `ResultType`,
iterable of `ResultType`, or `SubroutineCallable`
"""
_ALL_QUBITS = "ALL" # Flag to indicate all qubits in _qubit_observable_mapping
@classmethod
def register_subroutine(cls, func: SubroutineCallable) -> None:
"""Register the subroutine `func` as an attribute of the `Circuit` class. The attribute name
is the name of `func`.
Args:
func (SubroutineCallable): The function of the subroutine to add to the class.
Examples:
>>> def h_on_all(target):
... circ = Circuit()
... for qubit in target:
... circ += Instruction(Gate.H(), qubit)
... return circ
...
>>> Circuit.register_subroutine(h_on_all)
>>> circ = Circuit().h_on_all(range(2))
>>> for instr in circ.instructions:
... print(instr)
...
Instruction('operator': 'H', 'target': QubitSet(Qubit(0),))
Instruction('operator': 'H', 'target': QubitSet(Qubit(1),))
"""
def method_from_subroutine(self, *args, **kwargs) -> SubroutineReturn:
return self.add(func, *args, **kwargs)
function_name = func.__name__
setattr(cls, function_name, method_from_subroutine)
function_attr = getattr(cls, function_name)
function_attr.__doc__ = func.__doc__
def __init__(self, addable: AddableTypes | None = None, *args, **kwargs):
"""Inits a `Circuit`.
Args:
addable (AddableTypes | None): The item(s) to add to self.
Default = None.
Raises:
TypeError: If `addable` is an unsupported type.
Examples:
>>> circ = Circuit([Instruction(Gate.H(), 4), Instruction(Gate.CNot(), [4, 5])])
>>> circ = Circuit().h(0).cnot(0, 1)
>>> circ = Circuit().h(0).cnot(0, 1).probability([0, 1])
>>> @circuit.subroutine(register=True)
>>> def bell_pair(target):
... return Circ().h(target[0]).cnot(target[0:2])
...
>>> circ = Circuit(bell_pair, [4,5])
>>> circ = Circuit().bell_pair([4,5])
"""
self._moments: Moments = Moments()
self._result_types: dict[ResultType] = {}
self._qubit_observable_mapping: dict[Union[int, Circuit._ALL_QUBITS], Observable] = {}
self._qubit_observable_target_mapping: dict[int, tuple[int]] = {}
self._qubit_observable_set = set()
self._parameters = set()
self._observables_simultaneously_measurable = True
self._has_compiler_directives = False
self._measure_targets = None
if addable is not None:
self.add(addable, *args, **kwargs)
@property
def depth(self) -> int:
"""int: Get the circuit depth."""
return self._moments.depth
@property
def global_phase(self) -> float:
"""float: Get the global phase of the circuit."""
return sum(
instr.operator.angle
for moment, instr in self._moments.items()
if moment.moment_type == MomentType.GLOBAL_PHASE
)
@property
def instructions(self) -> list[Instruction]:
"""Iterable[Instruction]: Get an `iterable` of instructions in the circuit."""
return list(self._moments.values())
@property
def result_types(self) -> list[ResultType]:
"""list[ResultType]: Get a list of requested result types in the circuit."""
return list(self._result_types.keys())
@property
def basis_rotation_instructions(self) -> list[Instruction]:
"""Gets a list of basis rotation instructions.
Returns:
list[Instruction]: Get a list of basis rotation instructions in the circuit.
These basis rotation instructions are added if result types are requested for
an observable other than Pauli-Z.
This only makes sense if all observables are simultaneously measurable;
if not, this method will return an empty list.
"""
# Note that basis_rotation_instructions can change each time a new instruction
# is added to the circuit because `self._moments.qubits` would change
basis_rotation_instructions = []
if all_qubit_observable := self._qubit_observable_mapping.get(Circuit._ALL_QUBITS):
for target in self.qubits:
basis_rotation_instructions += Circuit._observable_to_instruction(
all_qubit_observable, target
)
return basis_rotation_instructions
target_lists = sorted(set(self._qubit_observable_target_mapping.values()))
for target_list in target_lists:
observable = self._qubit_observable_mapping[target_list[0]]
basis_rotation_instructions += Circuit._observable_to_instruction(
observable, target_list
)
return basis_rotation_instructions
@staticmethod
def _observable_to_instruction(
observable: Observable, target_list: list[int]
) -> list[Instruction]:
return [Instruction(gate, target_list) for gate in observable.basis_rotation_gates]
@property
def moments(self) -> Moments:
"""Moments: Get the `moments` for this circuit. Note that this includes observables."""
return self._moments
@property
def qubit_count(self) -> int:
"""Get the qubit count for this circuit. Note that this includes observables.
Returns:
int: The qubit count for this circuit.
"""
all_qubits = self._moments.qubits.union(self._qubit_observable_set)
return len(all_qubits)
@property
def qubits(self) -> QubitSet:
"""QubitSet: Get a copy of the qubits for this circuit."""
return QubitSet(self._moments.qubits.union(self._qubit_observable_set))
@property
def parameters(self) -> set[FreeParameter]:
"""Gets a set of the parameters in the Circuit.
Returns:
set[FreeParameter]: The `FreeParameters` in the Circuit.
"""
return self._parameters
def add_result_type(
self,
result_type: ResultType,
target: QubitSetInput | None = None,
target_mapping: dict[QubitInput, QubitInput] | None = None,
) -> Circuit:
"""Add a requested result type to `self`, returns `self` for chaining ability.
Args:
result_type (ResultType): `ResultType` to add into `self`.
target (QubitSetInput | None): Target qubits for the
`result_type`.
Default = `None`.
target_mapping (dict[QubitInput, QubitInput] | None): A dictionary of
qubit mappings to apply to the `result_type.target`. Key is the qubit in
`result_type.target` and the value is what the key will be changed to.
Default = `None`.
Returns:
Circuit: self
Note:
Target and target_mapping will only be applied to those requested result types with
the attribute `target`. The result_type will be appended to the end of the dict keys of
`circuit.result_types` only if it does not already exist in `circuit.result_types`
Raises:
TypeError: If both `target_mapping` and `target` are supplied.
ValueError: If a measure instruction exists on the current circuit.
Examples:
>>> result_type = ResultType.Probability(target=[0, 1])
>>> circ = Circuit().add_result_type(result_type)
>>> print(circ.result_types[0])
Probability(target=QubitSet([Qubit(0), Qubit(1)]))
>>> result_type = ResultType.Probability(target=[0, 1])
>>> circ = Circuit().add_result_type(result_type, target_mapping={0: 10, 1: 11})
>>> print(circ.result_types[0])
Probability(target=QubitSet([Qubit(10), Qubit(11)]))
>>> result_type = ResultType.Probability(target=[0, 1])
>>> circ = Circuit().add_result_type(result_type, target=[10, 11])
>>> print(circ.result_types[0])
Probability(target=QubitSet([Qubit(10), Qubit(11)]))
>>> result_type = ResultType.StateVector()
>>> circ = Circuit().add_result_type(result_type)
>>> print(circ.result_types[0])
StateVector()
"""
if target_mapping and target is not None:
raise TypeError("Only one of 'target_mapping' or 'target' can be supplied.")
if self._measure_targets:
raise ValueError(
"cannot add a result type to a circuit which already contains a "
"measure instruction."
)
if not target_mapping and not target:
# Nothing has been supplied, add result_type
result_type_to_add = result_type
elif target_mapping:
# Target mapping has been supplied, copy result_type
result_type_to_add = result_type.copy(target_mapping=target_mapping)
else:
# ResultType with target
result_type_to_add = result_type.copy(target=target)
if result_type_to_add not in self._result_types:
observable = Circuit._extract_observable(result_type_to_add)
# We can skip this for now for AdjointGradient (the only subtype of this
# type) because AdjointGradient can only be used when `shots=0`, and the
# qubit_observable_mapping is used to generate basis rotation instructions
# and make sure the observables mutually commute for `shots>0` mode.
supports_basis_rotation_instructions = not isinstance(
result_type_to_add, ObservableParameterResultType
)
if (
observable
and self._observables_simultaneously_measurable
and supports_basis_rotation_instructions
):
# Only check if all observables can be simultaneously measured
self._add_to_qubit_observable_mapping(observable, result_type_to_add.target)
self._add_to_qubit_observable_set(result_type_to_add)
# using dict as an ordered set, value is arbitrary
self._result_types[result_type_to_add] = None
return self
@staticmethod
def _extract_observable(result_type: ResultType) -> Optional[Observable]:
if isinstance(result_type, ResultType.Probability):
return Observable.Z() # computational basis
elif isinstance(result_type, ObservableResultType):
return result_type.observable
else:
return None
def _add_to_qubit_observable_mapping(
self, observable: Observable, observable_target: QubitSet
) -> None:
targets = observable_target or list(self._qubit_observable_set)
all_qubits_observable = self._qubit_observable_mapping.get(Circuit._ALL_QUBITS)
tensor_product_dict = (
Circuit._tensor_product_index_dict(observable, observable_target)
if isinstance(observable, TensorProduct)
else None
)
identity = Observable.I()
for i in range(len(targets)):
target = targets[i]
new_observable = tensor_product_dict[i][0] if tensor_product_dict else observable
current_observable = all_qubits_observable or self._qubit_observable_mapping.get(target)
add_observable = not current_observable or (
current_observable == identity and new_observable != identity
)
if (
not add_observable
and current_observable != identity
and new_observable != identity
and current_observable != new_observable
):
return self._encounter_noncommuting_observable()
if observable_target:
new_targets = (
tensor_product_dict[i][1] if tensor_product_dict else tuple(observable_target)
)
if add_observable:
self._qubit_observable_target_mapping[target] = new_targets
self._qubit_observable_mapping[target] = new_observable
elif new_observable.qubit_count > 1:
current_target = self._qubit_observable_target_mapping.get(target)
if current_target and current_target != new_targets:
return self._encounter_noncommuting_observable()
if not observable_target and observable != identity:
if all_qubits_observable and all_qubits_observable != observable:
return self._encounter_noncommuting_observable()
self._qubit_observable_mapping[Circuit._ALL_QUBITS] = observable
@staticmethod
def _tensor_product_index_dict(
observable: TensorProduct, observable_target: QubitSet
) -> dict[int, tuple[Observable, tuple[int, ...]]]:
obj_dict = {}
i = 0
factors = list(observable.factors)
total = factors[0].qubit_count
while factors:
if i >= total:
factors.pop(0)
if factors:
total += factors[0].qubit_count
if factors:
first = total - factors[0].qubit_count
obj_dict[i] = (factors[0], tuple(observable_target[first:total]))
i += 1
return obj_dict
def _add_to_qubit_observable_set(self, result_type: ResultType) -> None:
if isinstance(result_type, ObservableResultType) and result_type.target:
self._qubit_observable_set.update(result_type.target)
def _check_if_qubit_measured(
self,
instruction: Instruction,
target: QubitSetInput | None = None,
target_mapping: dict[QubitInput, QubitInput] | None = None,
) -> None:
"""Checks if the target qubits are measured. If the qubit is already measured
the instruction will not be added to the Circuit.
Args:
instruction (Instruction): `Instruction` to add into `self`.
target (QubitSetInput | None): Target qubits for the
`instruction`. If a single qubit gate, an instruction is created for every index
in `target`.
Default = `None`.
target_mapping (dict[QubitInput, QubitInput] | None): A dictionary of
qubit mappings to apply to the `instruction.target`. Key is the qubit in
`instruction.target` and the value is what the key will be changed to.
Default = `None`.
Raises:
ValueError: If adding a gate or noise operation after a measure instruction.
"""
if self._measure_targets:
measure_on_target_mapping = target_mapping and any(
targ in self._measure_targets for targ in target_mapping.values()
)
if (
# check if there is a measure instruction on the targeted qubit(s)
measure_on_target_mapping
or any(tar in self._measure_targets for tar in QubitSet(target))
or any(tar in self._measure_targets for tar in QubitSet(instruction.target))
):
raise ValueError("cannot apply instruction to measured qubits.")
def add_instruction(
self,
instruction: Instruction,
target: QubitSetInput | None = None,
target_mapping: dict[QubitInput, QubitInput] | None = None,
) -> Circuit:
"""Add an instruction to `self`, returns `self` for chaining ability.
Args:
instruction (Instruction): `Instruction` to add into `self`.
target (QubitSetInput | None): Target qubits for the
`instruction`. If a single qubit gate, an instruction is created for every index
in `target`.
Default = `None`.
target_mapping (dict[QubitInput, QubitInput] | None): A dictionary of
qubit mappings to apply to the `instruction.target`. Key is the qubit in
`instruction.target` and the value is what the key will be changed to.
Default = `None`.
Returns:
Circuit: self
Raises:
TypeError: If both `target_mapping` and `target` are supplied.
ValueError: If adding a gate or noise after a measure instruction.
Examples:
>>> instr = Instruction(Gate.CNot(), [0, 1])
>>> circ = Circuit().add_instruction(instr)
>>> print(circ.instructions[0])
Instruction('operator': 'CNOT', 'target': QubitSet(Qubit(0), Qubit(1)))
>>> instr = Instruction(Gate.CNot(), [0, 1])
>>> circ = Circuit().add_instruction(instr, target_mapping={0: 10, 1: 11})
>>> print(circ.instructions[0])
Instruction('operator': 'CNOT', 'target': QubitSet(Qubit(10), Qubit(11)))
>>> instr = Instruction(Gate.CNot(), [0, 1])
>>> circ = Circuit().add_instruction(instr, target=[10, 11])
>>> print(circ.instructions[0])
Instruction('operator': 'CNOT', 'target': QubitSet(Qubit(10), Qubit(11)))
>>> instr = Instruction(Gate.H(), 0)
>>> circ = Circuit().add_instruction(instr, target=[10, 11])
>>> print(circ.instructions[0])
Instruction('operator': 'H', 'target': QubitSet(Qubit(10),))
>>> print(circ.instructions[1])
Instruction('operator': 'H', 'target': QubitSet(Qubit(11),))
"""
if target_mapping and target is not None:
raise TypeError("Only one of 'target_mapping' or 'target' can be supplied.")
# Check if there is a measure instruction on the circuit
self._check_if_qubit_measured(instruction, target, target_mapping)
# Update measure targets if instruction is a measurement
if isinstance(instruction.operator, Measure):
measure_target = target or instruction.target[0]
self._measure_targets = (self._measure_targets or []) + [measure_target]
if not target_mapping and not target:
# Nothing has been supplied, add instruction
instructions_to_add = [instruction]
elif target_mapping:
# Target mapping has been supplied, copy instruction
instructions_to_add = [instruction.copy(target_mapping=target_mapping)]
elif hasattr(instruction.operator, "qubit_count") and instruction.operator.qubit_count == 1:
# single qubit operator with target, add an instruction for each target
instructions_to_add = [instruction.copy(target=qubit) for qubit in target]
else:
# non single qubit operator with target, add instruction with target
instructions_to_add = [instruction.copy(target=target)]
if self._check_for_params(instruction):
for param in instruction.operator.parameters:
if isinstance(param, FreeParameterExpression) and isinstance(
param.expression, Expr
):
free_params = param.expression.free_symbols
for parameter in free_params:
self._parameters.add(FreeParameter(parameter.name))
self._moments.add(instructions_to_add)
return self
def _check_for_params(self, instruction: Instruction) -> bool:
"""This checks for free parameters in an :class:{Instruction}. Checks children classes of
:class:{Parameterizable}.
Args:
instruction (Instruction): The instruction to check for a
:class:{FreeParameterExpression}.
Returns:
bool: Whether an object is parameterized.
"""
return issubclass(type(instruction.operator), Parameterizable) and any(
issubclass(type(param), FreeParameterExpression)
for param in instruction.operator.parameters
)
def add_circuit(
self,
circuit: Circuit,
target: QubitSetInput | None = None,
target_mapping: dict[QubitInput, QubitInput] | None = None,
) -> Circuit:
"""Add a `Circuit` to `self`, returning `self` for chaining ability.
Args:
circuit (Circuit): Circuit to add into self.
target (QubitSetInput | None): Target qubits for the
supplied circuit. This is a macro over `target_mapping`; `target` is converted to
a `target_mapping` by zipping together a sorted `circuit.qubits` and `target`.
Default = `None`.
target_mapping (dict[QubitInput, QubitInput] | None): A dictionary of
qubit mappings to apply to the qubits of `circuit.instructions`. Key is the qubit
to map, and the value is what to change it to. Default = `None`.
Returns:
Circuit: self
Raises:
TypeError: If both `target_mapping` and `target` are supplied.
Note:
Supplying `target` sorts `circuit.qubits` to have deterministic behavior since
`circuit.qubits` ordering is based on how instructions are inserted.
Use caution when using this with circuits that with a lot of qubits, as the sort
can be resource-intensive. Use `target_mapping` to use a linear runtime to remap
the qubits.
Requested result types of the circuit that will be added will be appended to the end
of the list for the existing requested result types. A result type to be added that is
equivalent to an existing requested result type will not be added.
Examples:
>>> widget = Circuit().h(0).cnot(0, 1)
>>> circ = Circuit().add_circuit(widget)
>>> instructions = list(circ.instructions)
>>> print(instructions[0])
Instruction('operator': 'H', 'target': QubitSet(Qubit(0),))
>>> print(instructions[1])
Instruction('operator': 'CNOT', 'target': QubitSet(Qubit(0), Qubit(1)))
>>> widget = Circuit().h(0).cnot(0, 1)
>>> circ = Circuit().add_circuit(widget, target_mapping={0: 10, 1: 11})
>>> instructions = list(circ.instructions)
>>> print(instructions[0])
Instruction('operator': 'H', 'target': QubitSet(Qubit(10),))
>>> print(instructions[1])
Instruction('operator': 'CNOT', 'target': QubitSet(Qubit(10), Qubit(11)))
>>> widget = Circuit().h(0).cnot(0, 1)
>>> circ = Circuit().add_circuit(widget, target=[10, 11])
>>> instructions = list(circ.instructions)
>>> print(instructions[0])
Instruction('operator': 'H', 'target': QubitSet(Qubit(10),))
>>> print(instructions[1])
Instruction('operator': 'CNOT', 'target': QubitSet(Qubit(10), Qubit(11)))
"""
if target_mapping and target is not None:
raise TypeError("Only one of 'target_mapping' or 'target' can be supplied.")
elif target is not None:
keys = sorted(circuit.qubits)
values = target
target_mapping = dict(zip(keys, values))
for instruction in circuit.instructions:
self.add_instruction(instruction, target_mapping=target_mapping)
for result_type in circuit.result_types:
self.add_result_type(result_type, target_mapping=target_mapping)
return self
def add_verbatim_box(
self,
verbatim_circuit: Circuit,
target: QubitSetInput | None = None,
target_mapping: dict[QubitInput, QubitInput] | None = None,
) -> Circuit:
"""Add a verbatim `Circuit` to `self`, ensuring that the circuit is not modified in
any way by the compiler.
Args:
verbatim_circuit (Circuit): Circuit to add into self.
target (QubitSetInput | None): Target qubits for the
supplied circuit. This is a macro over `target_mapping`; `target` is converted to
a `target_mapping` by zipping together a sorted `circuit.qubits` and `target`.
Default = `None`.
target_mapping (dict[QubitInput, QubitInput] | None): A dictionary of
qubit mappings to apply to the qubits of `circuit.instructions`. Key is the qubit
to map, and the value is what to change it to. Default = `None`.
Returns:
Circuit: self
Raises:
TypeError: If both `target_mapping` and `target` are supplied.
ValueError: If `circuit` has result types attached
Examples:
>>> widget = Circuit().h(0).h(1)
>>> circ = Circuit().add_verbatim_box(widget)
>>> print(list(circ.instructions))
[Instruction('operator': StartVerbatimBox, 'target': QubitSet([])),
Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(0)])),
Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(1)])),
Instruction('operator': EndVerbatimBox, 'target': QubitSet([]))]
>>> widget = Circuit().h(0).cnot(0, 1)
>>> circ = Circuit().add_verbatim_box(widget, target_mapping={0: 10, 1: 11})
>>> print(list(circ.instructions))
[Instruction('operator': StartVerbatimBox, 'target': QubitSet([])),
Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(10)])),
Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(11)])),
Instruction('operator': EndVerbatimBox, 'target': QubitSet([]))]
>>> widget = Circuit().h(0).cnot(0, 1)
>>> circ = Circuit().add_verbatim_box(widget, target=[10, 11])
>>> print(list(circ.instructions))
[Instruction('operator': StartVerbatimBox, 'target': QubitSet([])),
Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(10)])),
Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(11)])),
Instruction('operator': EndVerbatimBox, 'target': QubitSet([]))]
"""
if target_mapping and target is not None:
raise TypeError("Only one of 'target_mapping' or 'target' can be supplied.")
elif target is not None:
keys = sorted(verbatim_circuit.qubits)
values = target
target_mapping = dict(zip(keys, values))
if verbatim_circuit.result_types:
raise ValueError("Verbatim subcircuit is not measured and cannot have result types")
if verbatim_circuit._measure_targets:
raise ValueError("cannot measure a subcircuit inside a verbatim box.")
if verbatim_circuit.instructions:
self.add_instruction(Instruction(compiler_directives.StartVerbatimBox()))
for instruction in verbatim_circuit.instructions:
self.add_instruction(instruction, target_mapping=target_mapping)
self.add_instruction(Instruction(compiler_directives.EndVerbatimBox()))
self._has_compiler_directives = True
return self
def _add_measure(self, target_qubits: QubitSetInput) -> None:
"""Adds a measure instruction to the the circuit
Args:
target_qubits (QubitSetInput): target qubits to measure.
"""
for idx, target in enumerate(target_qubits):
num_qubits_measured = (
len(self._measure_targets)
if self._measure_targets and len(target_qubits) == 1
else 0
)
self.add_instruction(
Instruction(
operator=Measure(index=idx + num_qubits_measured),
target=target,
)
)
def measure(self, target_qubits: QubitSetInput) -> Circuit:
"""
Add a `measure` operator to `self` ensuring only the target qubits are measured.
Args:
target_qubits (QubitSetInput): target qubits to measure.
Returns:
Circuit: self
Raises:
IndexError: If `self` has no qubits.
IndexError: If target qubits are not within the range of the current circuit.
ValueError: If the current circuit contains any result types.
ValueError: If the target qubit is already measured.
Examples:
>>> circ = Circuit.h(0).cnot(0, 1).measure([0])
>>> circ.print(list(circ.instructions))
[Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(0)]),
Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0),
Qubit(1)]),
Instruction('operator': Measure, 'target': QubitSet([Qubit(0)])]
"""
if not isinstance(target_qubits, Iterable):
target_qubits = QubitSet(target_qubits)
# Check if result types are added on the circuit
if self.result_types:
raise ValueError("a circuit cannot contain both measure instructions and result types.")
# Check if there are repeated qubits in the same measurement
if len(target_qubits) != len(set(target_qubits)):
intersection = [qubit for qubit, count in Counter(target_qubits).items() if count > 1]
raise ValueError(
f"cannot repeat qubit(s) {', '.join(map(str, intersection))} "
"in the same measurement."
)
self._add_measure(target_qubits=target_qubits)
return self
def apply_gate_noise(
self,
noise: Union[type[Noise], Iterable[type[Noise]]],
target_gates: Optional[Union[type[Gate], Iterable[type[Gate]]]] = None,
target_unitary: Optional[np.ndarray] = None,
target_qubits: Optional[QubitSetInput] = None,
) -> Circuit:
"""Apply `noise` to the circuit according to `target_gates`, `target_unitary` and
`target_qubits`.
For any parameter that is None, that specification is ignored (e.g. if `target_gates`
is None then the noise is applied after every gate in `target_qubits`).
If `target_gates` and `target_qubits` are both None, then `noise` is
applied to every qubit after every gate.
Noise is either applied to `target_gates` or `target_unitary`, so they cannot be
provided at the same time.
When `noise.qubit_count` == 1, ie. `noise` is single-qubit, `noise` is added to all
qubits in `target_gates` or `target_unitary` (or to all qubits in `target_qubits`
if `target_gates` is None).
When `noise.qubit_count` > 1 and `target_gates` is not None, the number of qubits of
any gate in `target_gates` must be the same as `noise.qubit_count`.
When `noise.qubit_count` > 1, `target_gates` and `target_unitary` is None, noise is
only applied to gates with the same qubit_count in target_qubits.
Args:
noise (Union[type[Noise], Iterable[type[Noise]]]): Noise channel(s) to be applied
to the circuit.
target_gates (Optional[Union[type[Gate], Iterable[type[Gate]]]]): Gate class or
List of Gate classes which `noise` is applied to. Default=None.
target_unitary (Optional[ndarray]): matrix of the target unitary gates. Default=None.
target_qubits (Optional[QubitSetInput]): Index or indices of qubit(s).
Default=None.
Returns:
Circuit: self
Raises:
TypeError:
If `noise` is not Noise type.
If `target_gates` is not a Gate type, Iterable[Gate].
If `target_unitary` is not a np.ndarray type.
If `target_qubits` has non-integers or negative integers.
IndexError:
If applying noise to an empty circuit.
If `target_qubits` is out of range of circuit.qubits.
ValueError:
If both `target_gates` and `target_unitary` are provided.
If `target_unitary` is not a unitary.
If `noise` is multi-qubit noise and `target_gates` contain gates
with the number of qubits not the same as `noise.qubit_count`.
Warning:
If `noise` is multi-qubit noise while there is no gate with the same
number of qubits in `target_qubits` or in the whole circuit when
`target_qubits` is not given.
If no `target_gates` or `target_unitary` exist in `target_qubits` or
in the whole circuit when they are not given.
Examples:
::
>>> circ = Circuit().x(0).y(1).z(0).x(1).cnot(0,1)
>>> print(circ)
T : |0|1|2|
q0 : -X-Z-C-
|
q1 : -Y-X-X-
T : |0|1|2|
>>> noise = Noise.Depolarizing(probability=0.1)
>>> circ = Circuit().x(0).y(1).z(0).x(1).cnot(0,1)
>>> print(circ.apply_gate_noise(noise, target_gates = Gate.X))
T : | 0 | 1 |2|
q0 : -X-DEPO(0.1)-Z-----------C-
|
q1 : -Y-----------X-DEPO(0.1)-X-
T : | 0 | 1 |2|
>>> circ = Circuit().x(0).y(1).z(0).x(1).cnot(0,1)
>>> print(circ.apply_gate_noise(noise, target_qubits = 1))
T : | 0 | 1 | 2 |
q0 : -X-----------Z-----------C-----------
|
q1 : -Y-DEPO(0.1)-X-DEPO(0.1)-X-DEPO(0.1)-
T : | 0 | 1 | 2 |
>>> circ = Circuit().x(0).y(1).z(0).x(1).cnot(0,1)
>>> print(circ.apply_gate_noise(noise,
... target_gates = [Gate.X,Gate.Y],
... target_qubits = [0,1])
... )
T : | 0 | 1 |2|
q0 : -X-DEPO(0.1)-Z-----------C-
|
q1 : -Y-DEPO(0.1)-X-DEPO(0.1)-X-
T : | 0 | 1 |2|
"""
# check whether gate noise is applied to an empty circuit
if not self.qubits:
raise IndexError("Gate noise cannot be applied to an empty circuit.")
# check if target_gates and target_unitary are both given
if (target_unitary is not None) and (target_gates is not None):
raise ValueError("target_unitary and target_gates cannot be input at the same time.")
# check target_qubits
target_qubits = check_noise_target_qubits(self, target_qubits)
if any(qubit not in self.qubits for qubit in target_qubits):
raise IndexError("target_qubits must be within the range of the current circuit.")
# Check if there is a measure instruction on the circuit
self._check_if_qubit_measured(instruction=noise, target=target_qubits)
# make noise a list
noise = wrap_with_list(noise)
# make target_gates a list
if target_gates is not None:
target_gates = wrap_with_list(target_gates)
# remove duplicate items
target_gates = list(dict.fromkeys(target_gates))
for noise_channel in noise:
if not isinstance(noise_channel, Noise):
raise TypeError("Noise must be an instance of the Noise class")
# check whether target_gates is valid
if target_gates is not None:
check_noise_target_gates(noise_channel, target_gates)
if target_unitary is not None:
check_noise_target_unitary(noise_channel, target_unitary)
if target_unitary is not None:
return apply_noise_to_gates(self, noise, target_unitary, target_qubits)
else:
return apply_noise_to_gates(self, noise, target_gates, target_qubits)
def apply_initialization_noise(
self,
noise: Union[type[Noise], Iterable[type[Noise]]],
target_qubits: Optional[QubitSetInput] = None,
) -> Circuit:
"""Apply `noise` at the beginning of the circuit for every qubit (default) or
target_qubits`.
Only when `target_qubits` is given can the noise be applied to an empty circuit.
When `noise.qubit_count` > 1, the number of qubits in target_qubits must be equal
to `noise.qubit_count`.
Args:
noise (Union[type[Noise], Iterable[type[Noise]]]): Noise channel(s) to be applied
to the circuit.
target_qubits (Optional[QubitSetInput]): Index or indices of qubit(s).
Default=None.
Returns:
Circuit: self
Raises:
TypeError:
If `noise` is not Noise type.
If `target_qubits` has non-integers or negative integers.
IndexError:
If applying noise to an empty circuit when `target_qubits` is not given.
ValueError:
If `noise.qubit_count` > 1 and the number of qubits in target_qubits is
not the same as `noise.qubit_count`.
Examples:
>>> circ = Circuit().x(0).y(1).z(0).x(1).cnot(0,1)
>>> print(circ)
>>> noise = Noise.Depolarizing(probability=0.1)
>>> circ = Circuit().x(0).y(1).z(0).x(1).cnot(0,1)
>>> print(circ.apply_initialization_noise(noise))
>>> circ = Circuit().x(0).y(1).z(0).x(1).cnot(0,1)
>>> print(circ.apply_initialization_noise(noise, target_qubits = 1))
>>> circ = Circuit()
>>> print(circ.apply_initialization_noise(noise, target_qubits = [0, 1]))
"""
if (len(self.qubits) == 0) and (target_qubits is None):
raise IndexError(
"target_qubits must be provided in order to"
" apply the initialization noise to an empty circuit."
)
target_qubits = check_noise_target_qubits(self, target_qubits)
# make noise a list
noise = wrap_with_list(noise)
for noise_channel in noise:
if not isinstance(noise_channel, Noise):
raise TypeError("Noise must be an instance of the Noise class")
if noise_channel.qubit_count > 1 and noise_channel.qubit_count != len(target_qubits):
raise ValueError(
"target_qubits needs to be provided for this multi-qubit noise channel,"
" and the number of qubits in target_qubits must be the same as defined by"
" the multi-qubit noise channel."
)
return apply_noise_to_moments(self, noise, target_qubits, "initialization")
def make_bound_circuit(self, param_values: dict[str, Number], strict: bool = False) -> Circuit:
"""Binds `FreeParameter`s based upon their name and values passed in. If parameters
share the same name, all the parameters of that name will be set to the mapped value.
Args:
param_values (dict[str, Number]): A mapping of FreeParameter names
to a value to assign to them.
strict (bool): If True, raises a ValueError if any of the FreeParameters
in param_values do not appear in the circuit. False by default.
Returns:
Circuit: Returns a circuit with all present parameters fixed to their respective
values.
"""
if strict:
self._validate_parameters(param_values)
return self._use_parameter_value(param_values)
def _validate_parameters(self, parameter_values: dict[str, Number]) -> None:
"""Checks that the parameters are in the `Circuit`.
Args:
parameter_values (dict[str, Number]): A mapping of FreeParameter names