-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
338 lines (293 loc) · 16.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import os
import random
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler, SubsetRandomSampler
import datasets
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch
from models import build_model
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer pose estimator', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--fp16', action='store_true',
help='If True, Automatic Mixed Precision (AMP) is used')
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
#parser.add_argument('--dilation', action='store_true',
# help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--dilation5', action='store_true',
help="If true, we replace stride with dilation in the last/5th convolutional block (DC5)")
parser.add_argument('--dilation4', action='store_true',
help="If true, we replace stride with dilation in the second last/4th convolutional block (DC4)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--freeze_backbone', default=False, type=bool,
help="If set backbone is not trained, but only extracts features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=50, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# possible add-on
#parser.add_argument('--deformable', action='store_false',
# help="usage of deformable POET")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_kpts', default=5, type=float,
help="L1 kpts coefficient in the matching cost")
parser.add_argument('--set_cost_ctrs', default=1, type=float,
help="L2 center kpt coefficient in the matching cost")
parser.add_argument('--set_cost_deltas', default=1, type=float,
help="L1 offsets coefficient in the matching cost")
parser.add_argument('--set_cost_kpts_class', default=2, type=float,
help="kpts class coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--kpts_loss_coef', default=5, type=float)
parser.add_argument('--kpts_class_loss_coef', default=2, type=float)
parser.add_argument('--ctrs_loss_coef', default=1, type=float)
parser.add_argument('--deltas_loss_coef', default=1, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# pose estimation
# parser.add_argument('--hierarchical', default=False, type=bool,
# help="hierarchical representation of joints")
parser.add_argument('--kpts_center', default='center_of_mass', type=str,
help="definition of individual's joint center")
# dataset parameters
parser.add_argument('--macaquepose', action='store_true',
help="train on macaquepose dataset")
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--max_size', default=1333, type=int,
help='max_size of input images when resizing')
parser.add_argument('--coco_filter', default='',
help='type of annotation file to load')
# sanity checks
parser.add_argument('--downsampling', action='store_true',
help="downsample input images to iterate faster")
parser.add_argument('--overfit', action='store_true',
help="train only on a small subsample of training data to overfit")
# training parameters
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--chkpt_save', default=20, type=int,
help='after how many epochs an additional checkpoint is saved')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--resume_bb_only', action='store_true', help='only load weights from backbone')
parser.add_argument('--resume_model_only', action='store_true',
help='only load weights from model, but not optimizer, lr and epochs')
parser.add_argument('--mmpose_pre', action='store_true', help='load weights from mmpose')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# some machines have problems with cpu workers; in this case next line is needed
#torch.multiprocessing.set_sharing_strategy('file_system')
model, criterion, postprocessors = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu],
find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
if args.freeze_backbone:
for p in model_without_ddp.backbone.parameters():
p.requires_grad = False
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if ("backbone" in n and p.requires_grad and not args.freeze_backbone)],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
output_dir = Path(args.output_dir)
if args.overfit:
# overfit network to 5 training samples
subset_indices = np.random.choice(1000, 5, replace=False)
sampler_train = SubsetRandomSampler(subset_indices)
sampler_val = SubsetRandomSampler(subset_indices)
# save subset indices
with open(output_dir/"samples_indices.txt", "w") as text_file:
print("{}".format(subset_indices), file=text_file)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
if args.overfit: # when overfitting we want: train set = test set
dataset_val = dataset_train
data_loader_val = data_loader_train
if args.dataset_file == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", args)
base_ds = get_coco_api_from_dataset(coco_val)
else:
base_ds = get_coco_api_from_dataset(dataset_val)
#output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
if args.resume_bb_only:
# loading only weights of backbone
if args.mmpose_pre:
# other names in mmpose pretrained models param dicts
for name, param in checkpoint['state_dict'].items():
if not 'backbone' in name or 'num_batches_tracked' in name:
continue
param = param.data
name = 'backbone.0.body' + name[len('backbone'):]
model_without_ddp.state_dict()[name].copy_(param)
else:
for name, param in checkpoint['model'].items():
if not 'backbone' in name:
continue
param = param.data
model_without_ddp.state_dict()[name].copy_(param)
else:
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.resume_model_only:
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.eval:
#test_stats, coco_evaluator = evaluate(model, criterion, postprocessors,
test_stats, test_preds, coco_evaluator = evaluate(model, criterion, postprocessors, data_loader_val,
base_ds, device, args.output_dir, args.fp16)
if args.output_dir and utils.is_main_process():
with open((output_dir / 'eval_pred.json'), 'w') as predf:
json.dump(test_preds, predf)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["keypoints"].eval, output_dir / "eval.pth")
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
if args.fp16:
# initialize gradient scaler
scaler = torch.cuda.amp.GradScaler()
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm, args.fp16, scaler)
else:
train_stats = train_one_epoch(model, criterion, data_loader_train, optimizer,
device, epoch, args.clip_max_norm)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.chkpt_save == 0 or epoch == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:03}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
#test_stats, coco_evaluator = evaluate(
test_stats, test_preds, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, args.fp16
)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
with open((output_dir / 'eval_pred.json'), 'w') as predf:
json.dump(test_preds, predf)
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.chkpt_save == 0 or epoch == 0:
if not os.path.exists((output_dir / 'eval')):
os.makedirs((output_dir / 'eval'))
with open((output_dir / 'eval' / f'eval_pred{epoch:03}.json'), 'w') as predf:
json.dump(test_preds, predf)
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "keypoints" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["keypoints"].eval,
output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('POET training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)