forked from DeepLabCut/Primer-MotionCapture
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIllustrating-Augmentations-FigurePipelineMontBlancBirds.py
92 lines (71 loc) · 2.81 KB
/
Illustrating-Augmentations-FigurePipelineMontBlancBirds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This script uses Imgaug to display various augmentation methods for a few labeled images of a mouse
(Data recorded with Alex' iphone at Aiguille du Midi near Mont Blanc)
For "A Primer on Motion Capture with Deep Learning: Principles, Pitfalls and Perspectives"
by Alexander Mathis, Steffen Schneider, Jessy Lauer, and Mackenzie Weygandt Mathis
Uses Imgaug:
Code: https://github.com/aleju/imgaug
Docs: https://imgaug.readthedocs.io/en/latest/index.html
"""
import pandas as pd
import os
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables import Keypoint, KeypointsOnImage
import imageio
from deeplabcut.utils.auxfun_videos import imread, imresize
scale=.4
##########################
## Loading data
##########################
imfolder='montblanc_images'
Dataframe = pd.read_hdf(os.path.join(imfolder,"CollectedData_Daniel.h5"))
scorer=Dataframe.columns.get_level_values(0)[0]
individuals=Dataframe.columns.get_level_values(1)
bodyparts=Dataframe.columns.get_level_values(2)
ia.seed(1)
#parameters for plotting:
color=(200,0,0)
size=13
alpha=.15
#setting up augmentations
Augmentations=[]
augtype='rotateandscale'
#rotate & scale
seq = iaa.Sequential([
iaa.Multiply((1.2, 1.5)), # change brightness, doesn't affect keypoints
iaa.Affine(
rotate=23,
scale=(0.9, 1.1)
) # rotate by exactly 23 deg and scale to 90-10%, affects keypoints
])
Augmentations.append([augtype, seq])
augtype='fog'
seq = iaa.Sequential([iaa.Fog()])
Augmentations.append([augtype,seq])
augtype='snow'
seq = iaa.Sequential([iaa.Snowflakes(flake_size=(.2,.5),density=(0.005, 0.07), speed=(0.01, 0.05))])
Augmentations.append([augtype,seq])
for ind, imname in enumerate(Dataframe.index):
image=imresize(imread(os.path.join('montblanc_images',imname)),size=scale)
ny,nx,nc=np.shape(image)
kpts=[]
for i in individuals:
for b in bodyparts:
x, y=Dataframe.iloc[ind][scorer][i][b]['x'], Dataframe.iloc[ind][scorer][i][b]['y']
if np.isfinite(x) and np.isfinite(y):
kpts.append(Keypoint(x=x*scale,y=y*scale))
kps=KeypointsOnImage(kpts, shape=image.shape)
cells=[]
# image with keypoints before augmentation
image_before = kps.draw_on_image(image, color=color,size=size,alpha=alpha)
cells.append(image_before)
for name, seq in Augmentations:
image_aug, kps_aug = seq(image=image, keypoints=kps)
image_after = kps_aug.draw_on_image(image_aug, color=color,size=size,alpha=alpha)
cells.append(image_after)
grid_image = np.hstack(cells) # Horizontally stack the images
imageio.imwrite('augmentationexamples/'+str(imfolder)+'_'+imname.split('.png')[0]+'_joint.jpg', grid_image)