You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello @amaralibey, thank you for the amazing framework, the code is pretty easy to use!
I'm training a BoQ-ResNet-50 with the following parameters, for obtaining a 4096 descriptor dim. After 40 epochs, I'm obtaining slightly worse results than expected from BoQ repository README. Is there any parameter you recommend to adjust for some improvement? I reduced batch size to 64 to fit in my GPU, do you believe this may be the reason for reduced performance?
# ----------------------------------------------------------------------------# Copyright (c) 2024 Amar Ali-bey# # https://github.com/amaralibey/OpenVPRLab# Licensed under the MIT License. See LICENSE file in the project root.# ----------------------------------------------------------------------------#---------------------------------------------------# Datamodule Configuration#---------------------------------------------------datamodule:
train_set_name: "gsv-cities"# use "gsv-cities" if you have downloaded the full datasettrain_image_size:
- 320
- 320val_image_size:
- 384
- 384img_per_place: 4batch_size: 64num_workers: 8val_set_names:
- "msls-val"
- "pitts30k-val"#---------------------------------------------------# VPR Model Configuration#---------------------------------------------------backbone:
module: src.models.backbonesclass: ResNetparams:
backbone_name: "resnet50"# name of the resnet backbone (see ResNet.AVAILABLE_MODELS)pretrained: truenum_unfrozen_blocks: 2crop_last_block: true# Example of DinoV2# name: dinov2# module: src.models.backbones# class: DinoV2# params:# backbone_name: "dinov2_vitb14" # name of the vit backbone (see DinoV2.AVAILABLE_MODELS)# num_unfrozen_blocks: 2aggregator:
module: src.models.aggregators # module pathclass: BoQ # class name in the __init__.py file in the aggregators directoryparams:
in_channels: # if left blank we will use backbone.out_channels.proj_channels: 256num_queries: 32num_layers: 2row_dim: 16#---------------------------------------------------# Loss Function Configuration#---------------------------------------------------loss_function:
# check src/losses/vpr_losses.py for available loss functions, we are using pytorch_metric_learning library# if you want to develop your own loss function, you can add it to the vpr_losses.py file# or create a new file in the losses directory and import it into the __inin__.py filemodule: src.lossesclass: VPRLossFunctionparams:
loss_fn_name: "MultiSimilarityLoss"# other possible values: "SupConLoss", "ContrastiveLoss", "TripletMarginLoss"miner_name: "MultiSimilarityMiner"# other possible values: "TripletMarginMiner", "PairMarginMiner"#---------------------------------------------------# Trainer Configuration#---------------------------------------------------trainer:
optimizer: adamwlr: 0.0004# learning ratewd: 0.001# weight decaywarmup: 1500# linear warmup stepsmax_epochs: 40milestones:
- 5
- 10
- 20
- 30lr_mult: 0.25# learning rate multiplier at each milestone
The text was updated successfully, but these errors were encountered:
Hello @amaralibey, thank you for the amazing framework, the code is pretty easy to use!
I'm training a BoQ-ResNet-50 with the following parameters, for obtaining a 4096 descriptor dim. After 40 epochs, I'm obtaining slightly worse results than expected from BoQ repository README. Is there any parameter you recommend to adjust for some improvement? I reduced batch size to 64 to fit in my GPU, do you believe this may be the reason for reduced performance?
The text was updated successfully, but these errors were encountered: