forked from hugogarcia06/Patterson_code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEigenvalues_manually.py
212 lines (103 loc) · 5.14 KB
/
Eigenvalues_manually.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
author: david.planas-andres
Module extracts information from eigenvalues, for instance, not damped natural frequency, damping coefficient or time constant.
Module calculates "analytically" the dimensional eigenvalues using the aerodynamic coefficients
"""
import numpy as np
import math
from StabilityMapUtils import AeroForces
from numpy.linalg import inv
import ReadFileUtils as Read # utils to read Xfoil file
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
from scipy.interpolate import InterpolatedUnivariateSpline as IUS
import matplotlib.pyplot as plt
def Eig_info(Longieigvals,Lateigvals,g,fixtest):
V=fixtest[0]
eigenvalues = np.concatenate((Longieigvals,Lateigvals))
matrix = np.zeros( ( (len(eigenvalues)), (3) ) )
matrix_adim = np.zeros( ( (len(eigenvalues)), (3) ) )
for i in range(len(eigenvalues)):
if abs(eigenvalues[i].imag) >= 10e-9:
matrix[i,0]=((eigenvalues.real[i])**2+(eigenvalues.imag[i])**2 )**0.5
matrix[i,1]=(-eigenvalues.real[i])/ (((eigenvalues.real[i])**2+(eigenvalues.imag[i])**2 )**0.5)
matrix_adim[i,1]=matrix[i,1]
if i < 4:
matrix_adim[i,0]=matrix[i,0]*(g.c/(2*V))
else:
matrix_adim[i,0]=matrix[i,0]*(g.b/(2*V))
else:
matrix[i,2]=-1/eigenvalues.real[i]
if i <4:
matrix_adim[i,2]=-1/eigenvalues.real[i]*(g.c/(2*V))
else:
matrix_adim[i,2]= -1/eigenvalues.real[i]*(g.b/(2*V))
return matrix, matrix_adim
# rows: longitudinal eigenvalues, lateral eigenvalues
# colons: natural frequency, damping coefficient, time constant.
# adim stands for adimensionalized
def Eigenvalues(Aero_Derivatives_adim,x,fixtest,atmo,g,PW,CoefMatrix):
rho = atmo[1]
V = fixtest[0]
alpha = x[0]
beta = fixtest[1]
gamma = fixtest[2]
omega = fixtest[3]
p = x[1]
q = x[2]
r = x[3]
phi = x[4]
theta = x[5]
I = np.array([[g.Ix, 0, -g.Ixz], [0, g.Iy, 0], [-g.Ixz, 0, g.Iz]])
#for CLs and CDs calculus
V_vect = np.ones(g.N_eng) * V * np.cos((-np.sign(g.yp)) * beta + g.wingsweep) - r * g.yp
sub_vect = np.array([alpha, beta, p, q, r])
if g.nofin == False:
sub_vect = np.append(sub_vect, [x[6], x[7], x[8]])
else:
sub_vect = np.append(sub_vect, [x[6], x[7]])
Fx_vec = g.Thrust(x[-g.N_eng:], V_vect)
Tc = Fx_vec / (2 * rho * g.Sp * V_vect ** 2)
F = AeroForces.CalcForce_aeroframe_DEP(V, np.copy(CoefMatrix), np.copy(sub_vect), Tc, atmo, g, PW)
mulong = g.m/(rho*g.S*g.c*0.5)
mulat =g.m/(rho*g.S*g.b*0.5)
C_Yr = Aero_Derivatives_adim[3, 1]
C_Ybeta = Aero_Derivatives_adim[-3,1]
C_Zs = - g.m * 9.81 * np.cos(theta) / (0.5*rho*V**2*g.S)
C_Zu = Aero_Derivatives_adim[-4,2]
C_Zq = Aero_Derivatives_adim[2,2]
C_Zalfa = Aero_Derivatives_adim[0,2]
C_Zdevalfa = 0
C_mq = Aero_Derivatives_adim[2,4]
C_malfa = Aero_Derivatives_adim[0,4]
C_mdevalfa = 0
C_lp = Aero_Derivatives_adim[1,3]
C_lbeta = Aero_Derivatives_adim[-3,3]
C_lr = Aero_Derivatives_adim[3, 3]
C_nr = Aero_Derivatives_adim[3,5]
C_nbeta = Aero_Derivatives_adim[-3,5]
C_np = Aero_Derivatives_adim[1,5]
I_x = I[0,0] / (rho*g.S*(g.b*0.5)**3)
I_y = I[1,1] / (rho*g.S*(g.c*0.5)**3)
I_z = I[2,2] / (rho*g.S*(g.b*0.5)**3)
J_xz = -I[0,2] / (rho*g.S*(g.b*0.5)**3)
C_Ls = F[2]/(0.5*rho*V**2*g.S)
C_Ds = F[0]/(0.5*rho*V**2*g.S)
#Phugoid:
Wn_ph=((C_Zs*(2*C_Zs+C_Zu)/(2*mulong*(2*mulong+C_Zq)))**0.5) *(2*V/g.c)
xi_ph=(2-(-1))/(2*(2**0.5)*(np.tan(alpha)+C_Ls/C_Ds)) #formula from isae
lambda_ph= np.complex(-xi_ph*Wn_ph,Wn_ph*(1-xi_ph**2)**0.5)
#Short_Period
Wn_sp= ( ( (C_Zalfa*C_mq - (2*mulong+C_Zq)*C_malfa) / (I_y*(2*mulong-C_Zdevalfa)) )**0.5 )* (2*V/(g.c))
xi_sp= -((2*mulong-C_Zdevalfa)*C_mq+C_Zalfa*I_y+(2*mulong + C_Zq)*C_mdevalfa)/( 2* ((2*mulong-C_Zdevalfa)*I_y*(C_Zalfa*C_mq - (2*mulong+C_Zq)*C_malfa) )**0.5)
lambda_sp = np.complex(-xi_sp*Wn_sp,Wn_sp*(1-xi_sp**2)**0.5)
#Roll subsidence
lambda_rs= (C_lp/I_x) * (V/(g.b*0.5))
#Spiral
lambda_spiral= ( (-C_Zs*(C_lbeta*C_nr-C_nbeta*C_lr))/ ( (2*mulat - C_Yr)*(C_nbeta*C_lp - C_lbeta*C_np) + C_Ybeta*(C_lp*C_nr-C_np*C_lr) ) )* (V/(g.b*0.5))
#Dutch Roll
coef=[I_x*I_z,-(I_x*C_nr+I_z*C_lp),(I_x*C_nbeta+C_nr*C_lp-C_lr*C_np+J_xz*C_lbeta),-(C_nbeta*C_lp-C_lbeta*C_np)]
roots = np.roots(coef)
lambda_dr=roots[1] * (V/(g.b*0.5))
# return np.hstack((Wn_ph,xi_ph,Wn_sp,xi_sp,lambda_rs,lambda_spiral,roots))
return np.hstack((lambda_ph,lambda_sp,lambda_rs,lambda_spiral,lambda_dr))