-
Notifications
You must be signed in to change notification settings - Fork 567
/
Copy pathladder_peteish.py
602 lines (522 loc) · 22.6 KB
/
ladder_peteish.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import argparse
import logging
import os
import re
from copy import deepcopy
from datetime import timedelta
from typing import Set, Tuple, Union
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.distributed.fsdp import ShardingStrategy
from olmo import (
ActivationType,
DDPConfig,
InitFnType,
LayerNormType,
ModelConfig,
OptimizerConfig,
OptimizerType,
SchedulerConfig,
SchedulerType,
TokenizerConfig,
TrainConfig,
WandbConfig,
)
from olmo.config import (
DataConfig,
DistributedStrategy,
EvaluatorConfig,
EvaluatorType,
FSDPConfig,
FSDPPrecision,
FSDPWrapStrategy,
InstanceFilterConfig,
ShardedCheckpointerType,
SpeedMonitorConfig,
)
from olmo.data import named_data_mixes
from olmo.eval.downstream import label_to_task_map_new
from olmo.torch_util import get_local_rank
from olmo.util import (
add_cached_path_clients,
find_latest_checkpoint,
flatten_dict,
prepare_cli_environment,
)
log = logging.getLogger("train")
MODEL_CONFIG_190M = ModelConfig(
d_model=768,
n_heads=12,
n_layers=12,
mlp_ratio=8,
weight_tying=False,
alibi=False,
rope=True,
rope_theta=500000,
flash_attention=True,
attention_dropout=0.0,
attention_layer_norm=True,
include_bias=False,
layer_norm_type=LayerNormType.rms,
layer_norm_with_affine=True,
layer_norm_eps=1e-6,
bias_for_layer_norm=False,
attention_layer_norm_with_affine=True,
activation_type=ActivationType.swiglu,
residual_dropout=0.0,
embedding_dropout=0.0,
max_sequence_length=4096, # peteish7 uses 4096
vocab_size=100278,
embedding_size=100352,
eos_token_id=100257,
pad_token_id=100277,
init_device="cuda",
init_fn=InitFnType.normal,
init_std=0.02,
init_cutoff_factor=3,
norm_after=True,
precision="amp_bf16",
)
MODEL_CONFIGS = {
"190M": MODEL_CONFIG_190M,
"370M": MODEL_CONFIG_190M.update_with(d_model=1024, n_heads=16, n_layers=16, mlp_ratio=8),
"600M": MODEL_CONFIG_190M.update_with(d_model=1344, n_heads=16, n_layers=16, mlp_ratio=8),
"760M": MODEL_CONFIG_190M.update_with(d_model=1536, n_heads=16, n_layers=16, mlp_ratio=8),
"1B": MODEL_CONFIG_190M.update_with(d_model=2048, n_heads=16, n_layers=16, mlp_ratio=8),
"3B": MODEL_CONFIG_190M.update_with(d_model=3328, n_heads=16, n_layers=16, mlp_ratio=8),
"7B": MODEL_CONFIG_190M.update_with(
d_model=4096, n_heads=32, n_layers=32, mlp_ratio=0, mlp_hidden_size=22016, init_device="meta"
),
"13B": MODEL_CONFIG_190M.update_with(
d_model=5120, n_heads=40, n_layers=40, mlp_ratio=0, mlp_hidden_size=27648, init_device="meta"
),
}
# MODEL_GFLOPS = {
# key: flops_for_model(val) for key, val in MODEL_CONFIGS.items()
# }
MODEL_GFLOPS = {
"190M": 1903391232,
"370M": 3443922944,
"600M": 5180751744,
"760M": 6373843968,
"1B": 10109071360,
"3B": 22970355200,
"7B": 49412071424,
"13B": 91335915520,
}
# MODEL_PARAMS = {
# key: size_for_model(val)[1] for key, val in MODEL_CONFIGS.items()
# }
# These are updated with actual Peteish count
MODEL_PARAMS = {
"190M": 190354176,
"370M": 371262464,
"600M": 597382464,
"760M": 758220288,
"1B": 1279395840,
"3B": 3169537280,
"7B": 6887575552,
"13B": 13202396160,
}
_number_unit_re = re.compile(r"^([0-9]+)([a-zA-Z]+)$")
_run_name_re = re.compile(r"^([^-]+)-([^-]+)-([^-]+)$")
def parse_size(size: str) -> int:
return MODEL_PARAMS[size]
def parse_length(length: str, model_size: int) -> int:
if length == "0.5xC":
return 10 * model_size
length_in_tokens, length_unit = _number_unit_re.match(length.strip().upper()).groups() # type: ignore
length_in_tokens = int(length_in_tokens)
if length_unit == "C" or length_unit == "XC":
length_in_tokens *= 20 * model_size
elif length_unit == "K":
length_in_tokens *= 1000
elif length_unit == "M":
length_in_tokens *= 1000000
elif length_unit == "B":
length_in_tokens *= 1000000000
elif length_unit == "T":
length_in_tokens *= 1000000000000
else:
raise ValueError(f"Could not parse length '{args.length}'")
return length_in_tokens
def parse_run_name(name: str):
name, size, length = _run_name_re.match(name).groups() # type: ignore
size = parse_size(size)
length = parse_length(length, size)
return name, size, length
def get_batch_size(model_config, model_size, batch_size_divisor):
# calculate batch size according to
# https://www.semanticscholar.org/reader/5585191b1b479346ecf173be3b35c8313b77d457
# holds only for a sequence length of 2048 (but could probably be easily adapted)
assert model_config.max_sequence_length in [2048, 4096]
# if model_config.max_sequence_length == 2048:
global_batch_size = 160 * (model_size / 108000000) ** (2 / 3)
if model_config.max_sequence_length == 4096:
global_batch_size /= 2
global_batch_size /= batch_size_divisor
global_batch_size = round(global_batch_size)
global_batch_size *= batch_size_divisor
return global_batch_size
def config_from_args(args: argparse.Namespace) -> TrainConfig:
# Construct a config
args.model = args.model.strip().upper()
run_name = f"{args.name}-{args.model}-{args.length}"
assert "/" not in run_name
read_location = args.read_location
if read_location is None:
if args.s3:
read_location = "s3://ai2-llm"
else:
read_location = "/weka/oe-training-default/ai2-llm"
read_location.rstrip("/")
save_folder = f"{read_location}/checkpoints/OLMo-ladder/{run_name}"
if args.s3:
remote_save_folder = save_folder
else:
remote_save_folder = None
log.info(f"save folder: {save_folder}")
load_path = args.load_path
if load_path is None:
load_path = find_latest_checkpoint(save_folder)
model_config = MODEL_CONFIGS[args.model]
model_size = parse_size(args.model)
length_in_tokens = parse_length(args.length, model_size)
assert model_config.max_sequence_length in [2048, 4096]
# We don't want the global batch size depend on the device batch size, because we might have to change the
# device batch size based on the hardware we're running on.
default_device_batch_size = {
"190M": 8,
"370M": 8,
"600M": 4,
"760M": 4,
"1B": 2,
"3B": 2,
"7B": 1,
"13B": 1,
}.get(args.model, 4)
device_batch_size = args.device_batch_size if args.device_batch_size > 0 else default_device_batch_size
device_eval_batch_size = args.device_eval_batch_size if args.device_eval_batch_size > 0 else device_batch_size
if args.batch_size < 0:
global_batch_size = get_batch_size(model_config, model_size, args.batch_size_divisor)
else:
global_batch_size = args.batch_size # 128, 256, 512, 1024
assert global_batch_size % device_batch_size == 0
# calculate the learning rate according to the same paper
# if model_config.max_sequence_length == 2048:
lr = 0.0047 * (model_size / 108000000) ** (-1 / 3)
if model_config.max_sequence_length == 4096:
lr /= 4
save_interval = args.save_interval
eval_interval = args.eval_interval
distributed_strategy = {"3B": DistributedStrategy.fsdp, "7B": DistributedStrategy.fsdp}.get(
args.model, DistributedStrategy.ddp
)
return TrainConfig(
run_name=run_name,
seed=args.seed,
wandb=None if not args.wandb else WandbConfig(name=run_name, group=run_name, project="olmo-ladder"),
model=model_config,
ddp=DDPConfig(), # defaults are fine
fsdp=FSDPConfig(
sharding_strategy=ShardingStrategy.SHARD_GRAD_OP,
wrapping_strategy=FSDPWrapStrategy.by_block_and_size,
precision=FSDPPrecision.mixed,
),
optimizer=OptimizerConfig(
name=OptimizerType.adamw,
learning_rate=lr,
weight_decay=0.1,
eps=1e-8,
decay_norm_and_bias=True,
decay_embeddings=False,
betas=(0.9, 0.95),
metrics_log_interval=10,
),
scheduler=SchedulerConfig(
name=args.scheduler_type,
alpha_f=args.alpha_f,
warmup_min_lr=0.0,
t_warmup=round(model_size / (global_batch_size * model_config.max_sequence_length)),
t_decay=round(0.1 * length_in_tokens / (global_batch_size * model_config.max_sequence_length)),
),
max_duration=f"{length_in_tokens}T",
global_train_batch_size=global_batch_size,
tokenizer=TokenizerConfig(identifier="allenai/dolma2-tokenizer"),
save_folder=save_folder,
remote_save_folder=remote_save_folder,
save_overwrite=args.save_overwrite,
save_interval_unsharded=save_interval,
save_num_unsharded_checkpoints_to_keep=-1,
save_interval=None,
load_path=load_path,
eval_on_load=args.eval_on_load,
sharded_checkpointer=ShardedCheckpointerType.olmo_core,
device_train_microbatch_size=device_batch_size,
precision="amp_bf16",
distributed_strategy=distributed_strategy,
fused_loss=None,
gen1_gc_interval=2,
max_grad_norm=1.0,
speed_monitor=SpeedMonitorConfig(window_size=1),
eval_interval=eval_interval,
device_eval_batch_size=device_eval_batch_size,
evaluators=[
EvaluatorConfig(
label="all-small-ppl-validation",
data=DataConfig(
drop_last=True,
memmap_dtype="uint32",
datasets={
"c4_en-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/c4_en/val/part-0-00000.npy"
],
"dolma_books-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/dolma_books/val/part-0-00000.npy"
],
"dolma_common-crawl-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/dolma_common-crawl/val/part-0-00000.npy"
],
"dolma_pes2o-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/dolma_pes2o/val/part-0-00000.npy"
],
"dolma_reddit-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/dolma_reddit/val/part-0-00000.npy"
],
"dolma_stack-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/dolma_stack/val/part-0-00000.npy"
],
"dolma_wiki-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/dolma_wiki/val/part-0-00000.npy"
],
"ice-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/ice/val/part-0-00000.npy"
],
"m2d2_s2orc-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/m2d2_s2orc/val/part-0-00000.npy"
],
"pile-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/pile/val/part-0-00000.npy"
],
"wikitext_103-validation": [
f"{read_location}/eval-data/perplexity/v3_small_dolma2-tokenizer/wikitext_103/val/part-0-00000.npy"
],
},
),
),
# EvaluatorConfig(label="piqa", type=EvaluatorType.downstream),
# EvaluatorConfig(label="hellaswag", type=EvaluatorType.downstream),
# EvaluatorConfig(label="winogrande", type=EvaluatorType.downstream),
# EvaluatorConfig(label="openbook_qa", type=EvaluatorType.downstream),
# EvaluatorConfig(label="boolq", type=EvaluatorType.downstream),
# EvaluatorConfig(label="sciq", type=EvaluatorType.downstream),
# EvaluatorConfig(label="arc_easy", type=EvaluatorType.downstream),
# EvaluatorConfig(label="arc_challenge", type=EvaluatorType.downstream),
# EvaluatorConfig(label="copa", type=EvaluatorType.downstream),
# EvaluatorConfig(label="commonsense_qa", type=EvaluatorType.downstream),
# EvaluatorConfig(label="social_iqa", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_stem_var", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_humanities_var", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_social_sciences_var", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_other_var", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_stem_mc_5shot", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_humanities_mc_5shot", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_social_sciences_mc_5shot", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_other_mc_5shot", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_stem_mc_5shot_test", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_humanities_mc_5shot_test", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_social_sciences_mc_5shot_test", type=EvaluatorType.downstream),
# EvaluatorConfig(label="mmlu_other_mc_5shot_test", type=EvaluatorType.downstream),
# EvaluatorConfig(label="basic_arithmetic", type=EvaluatorType.downstream),
# EvaluatorConfig(label="trivia_qa_wiki_ppl", type=EvaluatorType.downstream),
# EvaluatorConfig(label="natural_qs_open_ppl", type=EvaluatorType.downstream),
# EvaluatorConfig(label="arc_easy_ppl", type=EvaluatorType.downstream),
]
+ [
EvaluatorConfig(label=label, type=EvaluatorType.downstream)
for label in label_to_task_map_new.keys()
if "_train_" not in label and "_mc_" not in label and "_var" not in label
],
data=DataConfig(
num_workers=32,
drop_last=True,
pin_memory=True,
prefetch_factor=8,
persistent_workers=True,
instance_filter=InstanceFilterConfig(), # defaults are fine
paths=[f"{read_location}/{path}" for path in named_data_mixes.DATA_PATHS[args.data]],
memmap_dtype="uint32",
seed=args.data_seed,
),
auxiliary_loss_multiplier=1e-5,
softmax_auxiliary_loss=True,
)
def _factors(n: int) -> Set[int]:
return {f for i in range(1, int(n**0.5) + 1) if n % i == 0 for f in [i, n // i]}
def nodecounts_cmd(args: argparse.Namespace):
cfg = config_from_args(args)
if cfg.global_train_batch_size % cfg.device_train_microbatch_size != 0:
raise ValueError("Microbatchsize must divide global batch size evenly.")
num_gpus = cfg.global_train_batch_size // cfg.device_train_microbatch_size
if num_gpus % args.gpus_per_node != 0:
raise ValueError(
f"With {cfg.global_train_batch_size} bz, {cfg.device_train_microbatch_size} mbz, and {args.gpus_per_node} GPUs per node, it's impossible to allocate whole nodes."
)
max_num_nodes = num_gpus // args.gpus_per_node
for factor in reversed(list(_factors(max_num_nodes))):
print(factor)
def size_for_model(model_config: Union[ModelConfig, str]) -> Tuple[int, int]:
if isinstance(model_config, str):
model_config = MODEL_CONFIGS[model_config]
assert isinstance(model_config, ModelConfig)
model_config = deepcopy(model_config)
model_config.init_device = "cpu"
n_layers = model_config.n_layers
model_config.n_layers = 1
from olmo import OLMo
single_layer_model = OLMo(model_config)
block = single_layer_model.transformer.blocks[0] # type: ignore
params_per_block = sum(p.numel() for p in block.parameters()) # type: ignore
return (
single_layer_model.num_params() + (params_per_block * (n_layers - 1)),
single_layer_model.num_params(include_embedding=False) + (params_per_block * (n_layers - 1)),
)
def size_cmd(args: argparse.Namespace):
cfg = config_from_args(args)
with_embeddings, without_embeddings = size_for_model(cfg.model)
print(with_embeddings)
print(without_embeddings)
def flops_for_model(model_config: Union[ModelConfig, str]) -> int:
if isinstance(model_config, str):
model_config = MODEL_CONFIGS[model_config]
assert isinstance(model_config, ModelConfig)
model_config = deepcopy(model_config)
model_config.init_device = "cpu"
from olmo import OLMo
model = OLMo(model_config, init_params=False)
model_flops = model.num_fwd_flops + model.num_bck_flops
return model_flops
def flops_cmd(args: argparse.Namespace):
cfg = config_from_args(args)
flops = flops_for_model(cfg.model)
length_in_tokens = parse_length(args.length, parse_size(args.model))
print("Expected model flops: ", round(flops * length_in_tokens / 1e18, 3), "x 10^9 GFlops")
def dump_cmd(args: argparse.Namespace):
cfg = config_from_args(args).asdict()
if not args.dump_evaluators:
del cfg["evaluators"]
if not args.dump_data:
del cfg["data"]
for key, value in sorted(flatten_dict(cfg).items()):
print(f"{key}: {value}")
def train_cmd(args: argparse.Namespace):
cfg = config_from_args(args)
log.info(f"save folder from config: {cfg.save_folder}")
try:
mp.set_start_method("spawn", force=True)
except RuntimeError as e:
print(f"failed to set multiprocessing start method: {e}")
torch.cuda.set_device(f"cuda:{get_local_rank()}")
dist.init_process_group(backend="nccl", timeout=timedelta(minutes=30))
prepare_cli_environment()
add_cached_path_clients()
from train import main
main(cfg)
def eval_cmd(args: argparse.Namespace):
cfg = config_from_args(args)
log.info(f"save folder from config: {cfg.save_folder}")
try:
mp.set_start_method("spawn", force=True)
except RuntimeError as e:
print(f"failed to set multiprocessing start method: {e}")
torch.cuda.set_device(f"cuda:{get_local_rank()}")
dist.init_process_group(backend="nccl", timeout=timedelta(minutes=30))
prepare_cli_environment()
add_cached_path_clients()
from eval import main
main(cfg)
if __name__ == "__main__":
parser = argparse.ArgumentParser(os.path.basename(__file__))
subparsers = parser.add_subparsers(required=True)
no_train_defaults = dict(
data="olmoe-mix-0924",
length="1xC",
name="nodecounts",
s3=False,
wandb=False,
save_overwrite=False,
load_path=None,
eval_on_load=False,
read_location=None,
batch_size=-1,
device_batch_size=-1,
device_eval_batch_size=-1,
save_interval=1,
eval_interval=1,
alpha_f=0.1,
batch_size_divisor=32,
scheduler_type="cosine_with_warmup",
seed=6198,
data_seed=None,
)
nodecounts_parser = subparsers.add_parser("nodecounts")
nodecounts_parser.set_defaults(func=nodecounts_cmd, **no_train_defaults)
nodecounts_parser.add_argument("--gpus-per-node", type=int, default=8)
nodecounts_parser.add_argument("--model", type=str, required=True)
size_parser = subparsers.add_parser("size")
size_parser.set_defaults(func=size_cmd, **no_train_defaults)
size_parser.add_argument("--model", type=str, required=True)
flops_parser = subparsers.add_parser("flops")
flops_parser.set_defaults(func=flops_cmd, **no_train_defaults)
flops_parser.add_argument("--model", type=str, required=True)
flops_parser.add_argument("--length", type=str, required=True)
dump_parser = subparsers.add_parser("dump")
dump_parser.set_defaults(func=dump_cmd)
dump_parser.add_argument(
"--dump_evaluators", action=argparse.BooleanOptionalAction, default=False, help="Dump evaluator config"
)
dump_parser.add_argument(
"--dump_data", action=argparse.BooleanOptionalAction, default=False, help="Dump data config"
)
train_parser = subparsers.add_parser("train")
train_parser.set_defaults(func=train_cmd)
train_parser.add_argument("--seed", type=int, required=False)
train_parser.add_argument("--data_seed", type=int, required=False)
eval_parser = subparsers.add_parser("eval")
eval_parser.set_defaults(func=eval_cmd)
for subparser in [dump_parser, train_parser, eval_parser]:
subparser.add_argument("--model", type=str, required=True)
subparser.add_argument("--data", type=str, required=True)
subparser.add_argument("--length", type=str, default="2xC")
subparser.add_argument("--name", type=str, required=True)
subparser.add_argument("--batch_size", type=int, required=False, default=-1)
subparser.add_argument(
"--batch_size_divisor",
type=int,
required=False,
default=32,
help="Global batch size should be divisible by this number",
)
subparser.add_argument("--device_batch_size", type=int, required=False, default=-1)
subparser.add_argument("--device_eval_batch_size", type=int, required=False, default=-1)
subparser.add_argument(
"--s3",
action=argparse.BooleanOptionalAction,
default=False,
help="read data from S3, write checkpoints to S3",
)
subparser.add_argument(
"--wandb", action=argparse.BooleanOptionalAction, default=True, help="create a run in wandb"
)
subparser.add_argument("--read_location", type=str, default=None)
subparser.add_argument("--write_location", type=str, default=None)
subparser.add_argument("--save_overwrite", action="store_true")
subparser.add_argument("--load_path", type=str)
subparser.add_argument("--eval_on_load", action="store_true")
subparser.add_argument("--save_interval", type=int, default=200)
subparser.add_argument("--eval_interval", type=int, default=200)
subparser.add_argument("--alpha_f", type=float, default=0.1)
subparser.add_argument("--scheduler_type", type=str, default=SchedulerType.cosine_with_warmup)
args = parser.parse_args()
args.func(args)