generated from allenai/python-package-template
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathexample_paloma_config.jsonnet
44 lines (34 loc) · 1.63 KB
/
example_paloma_config.jsonnet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/*--------------------------------------- Configurations -----------------------------------------*/
local utils = import 'utils.libsonnet';
//❗ To run this config you will need to first set up the data following the instructions in ai2-llm-eval/eval_data/README.md
//❗ Also note that this will run validation results. Change to paloma_hf_release_test.libsonnet to run test results.
local ppl_suite = import 'task_sets/paloma_hf_release_val.libsonnet';
//❗Set gsheet to the name of your google sheet.
// Set it to null if you do not want your results to be uploaded to a google sheet (they will still be saved as an object).
local gsheet = null;
//❗Set output_dir to a directory where you want to save outputs as jsonl.gz files .
// Set it to null if you do not want your results saved as jsonl.gz files.
local output_dir = null;
local create_models = function(model_path, revisions, gpus_needed) [
{
model_path: model_path,
revision: rev,
gpus_needed: gpus_needed,
prediction_kwargs: {
model_max_length: 2048, //❗Ensure that this is set to the actual max len of your model
limit: 2, //❗ Here we only run 2 examples per task for testing purposes. Set this to null to run all examples.
}
}
for rev in revisions
];
local revisions = [
"step" + std.toString(i * 10000)
for i in std.range(14, 14) //❗ Set this to the range of revisions you want to run.
];
local models = create_models("EleutherAI/pythia-160m-seed1", revisions, 1);
local task_sets = [
ppl_suite.task_set
];
{
steps: utils.create_fine_grained_pipeline(models, task_sets, gsheet, output_dir)
}