-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackward_feature_selection.py
552 lines (499 loc) · 22.8 KB
/
backward_feature_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import pickle
import logging
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from backwardAndForward_selection import backwardSelection, forwardSelection
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
sns.set_style('whitegrid')
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.preprocessing import scale
from sklearn.model_selection import ShuffleSplit, StratifiedKFold
from scipy import stats
from sklearn.naive_bayes import CategoricalNB
from sklearn.metrics import RocCurveDisplay
from sklearn.metrics import auc
# pgmpy
from pgmpy.readwrite.XMLBeliefNetwork import XBNWriter
from pgmpy.readwrite import PomdpXWriter
from pgmpy.readwrite import XMLBIFWriter, XMLBIFReader, XBNReader
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination
from pgmpy.sampling import BayesianModelSampling
from pgmpy.estimators import PC, HillClimbSearch, ExhaustiveSearch, HillClimbSearch, BicScore, BDeuScore
from pgmpy.estimators import K2Score, TreeSearch, BayesianEstimator, ParameterEstimator
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
def discretize_data(df, column_name: str, label: str, max_bin=9, min_result=26):
from ivpy import discretize
res = discretize(df[column_name], df[label], maxbin=max_bin, minres=min_result)
return res['breaks'], pd.cut(df[column_name], res['breaks'])
def drop_high_corrs(df, t=0.9):
# Create correlation matrix
corr_matrix = df.corr().abs()
# Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
# Find index of feature columns with correlation greater than t=0.95
to_drop = [column for column in upper.columns if any(upper[column] > t)]
# Drop features
return df.drop(df[to_drop], axis=1)
def read_data(path="day0_discrete_filtered_features.csv", day=-1, sep=","):
# read data
d = pd.read_csv(path, sep)
d = d[d['day0_in'] <= 0]
df = d.drop_duplicates(subset=['id'], keep='first')
df = df.reset_index(drop=True)
# unwanted = ['d01_drowsiness_day', 'd01_retro_day', 'd01_vomiting_day', 'd01_nose_day', 'd01_anorexia_day',
# 'd01_febrile',
# 'd01_rashwith_day', 'd01_nausea_day', 'd01_myalgia_day', 'd01_stool_day', 'd01_gum_day',
# 'd01_diarrhea_day',
# 'd01_non_prod_day', 'd01_exud_day', 'd01_clear_day', 'd01_bone_day', 'd01_headache_day',
# 'd01_spont_day', 'd01_feeling_day',
# 'd01_flushed_day',
# 'd01_abdominal_day', 'd04_epitro', 'd04_inguinal', 'd04_cervical', 'd04_epitro_d12', 'd04_cervical_d12',
# 'd04_inguinal_d12', 'd04_epitro_3', 'd04_inguinal_d', 'd04_epitro_da', 'd04_ab_circum_d23',
# 'd04_cervical_da',
# 'd04_ab_circum_3', 'd04_cervical_ds', 'd04_epitro_1', 'd04_cervical_d13', 'd04_cervical_2',
# 'd04_inguinal_1',
# 'd04_inguinal_d23', 'd04_inguinal_da', 'd04_epitro_d23', 'd04_inguinal_ds', 'd04_cervical_1',
# 'd04_cervical_d23',
# 'd04_cervical_3', 'd04_epitro_d13', 'd04_cervical_d', 'd04_epitro_2', 'd04_epitro_ds', 'd04_epitro_d',
# 'd04_inguinal_d13',
# 'd04_inguinal_3', 'd04_inguinal_2', 'final_audit_final_dx', 'dengue_dx', 'day0_in', 'id']
df["d05_ast_alt"] = df['d05_lft_ast'] / df['d05_lft_alt']
df = df.drop("dengue_dx", axis=1)
# listd = list(df)
# ind = [ele for ele in listd if ele not in unwanted]
# data["d05_ast_alt_1"] = data['d05_lft_ast_1'] / data['d05_lft_alt_1']
# data["d05_ast_alt_2"] = data['d05_lft_ast_2'] / data['d05_lft_alt_2']
# data["d05_ast_alt_d"] = data['d05_lft_ast_2'] - data['d05_lft_alt_1']
# day 3
# data["d05_ast_alt_1"] = data['d05_lft_ast_1'] / data['d05_lft_alt_1']
# data["d05_ast_alt_2"] = data['d05_lft_ast_2'] / data['d05_lft_alt_2']
# data["d05_ast_alt_3"] = data['d05_lft_ast_3'] / data['d05_lft_alt_3']
# data["d05_ast_alt_m"] = (data['d05_ast_alt_3'] + data['d05_ast_alt_2'] + data['d05_ast_alt_1']) / 3
# data["d05_ast_alt_d"] = data['d05_lft_ast_2'] - data['d05_lft_ast_3'] - data['d05_lft_alt_1']
# data["d05_lft_alt_d"] = data['d05_lft_alt_3'] - data['d05_lft_alt_2'] - data['d05_lft_alt_1']
# data["d04_abdominal_d"] = data['d04_abdominal_3'] - data['d04_abdominal_2'] - data['d04_abdominal_1']
#
# data["d05_lymp_d"] = data['d05_lymp_3'] - data['d05_lymp_2'] - data['d05_lymp_1']
# data["d03_hct_avg_d"] = data['d03_hct_avg_3'] - data['d03_hct_avg_2'] - data['d03_hct_avg_1']
# data["d05_lft_protein_d"] = data['d05_lft_protein_3'] - data['d05_lft_protein_2'] - data['d05_lft_protein_1']
# data["d04_ab_circum_d"] = data['d04_ab_circum_3'] - data['d04_ab_circum_2'] - data['d04_ab_circum_1']
# data["d03_pulse_pre_min_d"] = data['d03_pulse_pre_min_3'] - data['d03_pulse_pre_min_2'] - data[
# 'd03_pulse_pre_min_1']
#
# data["d04_ab_circum_m"] = (data['d04_ab_circum_3'] + data['d04_ab_circum_2'] + data['d04_ab_circum_1']) / 3
#
# data["d03_temp_min_d"] = data['d03_temp_min_3'] - data['d03_temp_min_2'] - data['d03_temp_min_1']
# data["d03_temp_min_m"] = (data['d03_temp_min_3'] + data['d03_temp_min_2'] + data['d03_temp_min_1']) / 3
# data["d03_pulse_pre_min_m"] = (data['d03_pulse_pre_min_3'] + data['d03_pulse_pre_min_2'] + data[
# 'd03_pulse_pre_min_1']) / 3
return df
def roc_auc(data=[], plot=True):
from sklearn.metrics import roc_curve, roc_auc_score
for d in data:
model_name = d[0]
label = model_name.split('_')[0]
Y_test = d[1]
probs = d[2]
_auc = roc_auc_score(Y_test, probs)
print(f'{model_name}: AUROC = %0.3f' % _auc)
# Calculate ROC curve
_fpr, _tpr, _ = roc_curve(Y_test, probs)
# if plot:
# plt.plot(_fpr, _tpr, linestyle='--', label=f'{label} (AUROC = %0.3f)' % _auc)
# # Title
# plt.title('ROC Plot')
# # Axis labels
# plt.xlabel('False Positive Rate')
# plt.ylabel('True Positive Rate')
# # Show legend
# plt.legend() #
# # Show plot
# plt.savefig(r'figures/{}.png'.format(model_name))
# plt.show()
# print(confusion_matrix(Y_test,probs))
return _auc
def select_features(df, class_label, n=20) -> pd.DataFrame:
from sklearn import preprocessing
from collections import defaultdict
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
try:
del df["id"]
del df["day"]
del df["final_audit_final_dx"]
except:
pass
d = defaultdict(preprocessing.LabelEncoder)
df = data.apply(lambda x: d[x.name].fit_transform(x))
y = df[class_label]
X = df[[f for f in df.columns if f != class_label]]
# apply SelectKBest class to extract top 10 best features
best_features = SelectKBest(score_func=chi2, k=10)
fit = best_features.fit(X, y)
df_scores = pd.DataFrame(fit.scores_)
df_columns = pd.DataFrame(X.columns)
# concat two dataframes for better visualization
feature_scores = pd.concat([df_columns, df_scores], axis=1)
feature_scores.columns = ['Features', 'Score'] # naming the dataframe columns
# print(feature_scores[feature_scores['Features'].isin(FEATURES)].sort_values(by='Score',ascending=False))
# print(feature_scores.sort_values(by=["Score"], ascending=False).head(50))
return (feature_scores.nlargest(n, 'Score'))
def check_continues_features(d):
d = d.copy()
cl = []
for i in d.columns:
num = d[i].nunique()
if num >= 4:
# print("\nColumn Name:",i,"-->",df[i].unique(),"-->Unique Count",len(df[i].unique()),"\n")
cl.append(i)
return cl
def check_classifier(x_test, model):
return model.predict(x_test)
def check_Network(x_test, model, f=["age", "d01_sex"]):
infer = VariableElimination(model)
target = "dhf_dx"
x_test2 = x_test[f]
result = []
for c, r in x_test2.iterrows():
ev = r.to_dict()
re = infer.query(variables=[target], evidence=ev).values
result.append(re[1])
return np.array(result)
def feature_elimination(X, ix):
if ix:
return X[ix], X[:ix]
return X, X
def edge_builder(features, parent="dhf_dx", container=[]):
res = container.copy()
for f in features:
if (f != parent and f != "dhf_dx"):
res.append((parent, f))
return res
def all_features(df):
# day2
# feature_list = list({'dhf_dx', 'd03_temp_min_2',
# 'd04_ab_circum_1',
# 'd05_lymp_2',
# 'd03_hct_avg_d',
# 'd05_lft_ast_1',
# 'd05_lft_alt_1',
# 'd05_lft_protein_d',
# 'd05_lymp_d',
# 'd05_lymp_1',
# 'd03_temp_min_1',
# 'd04_clear_1',
# 'd05_lft_protein_2',
# 'd03_pulse_rate_range_2',
# 'd05_band_1',
# 'd05_pmn_d',
# 'd05_pmn_2',
# 'd04_abdominal_2',
# 'd05_atyp_2',
# 'd03_hct_avg_2',
# 'd04_injected_2',
# 'd03_intake_diff_1',
# 'd05_ast_alt_1',
# 'd04_ab_circum_d',
# 'd03_intake_diff_d',
# 'd03_intake_diff_2',
# 'd04_diarrhea_1',
# 'd03_temp_min_d',
# 'fever_day',
# 'd03_pulse_rate_range_1',
# 'd05_pmn_1',
# 'd04_itching_2',
# 'd05_lft_protein_1',
# 'd05_eosin_1',
# 'd05_eosin_2',
# 'd04_abdominal_1',
# 'd05_lft_alt_d',
# 'd03_pulse_pre_min_2',
# 'd03_pulse_pre_min_d',
# 'd03_pulse_pre_min_1',
# 'd04_injected_1',
# 'd05_ast_alt_d'})
# day 1
# feature_list =['d04_lymph', 'd05_ast_alt', 'd05_pmn', 'd01_vomit_bleed_day', 'dhf_dx',
# 'd05_lft_albumin', 'fever_day', 'd05_band', 'd01_gum_day',
# 'd01_exud_day', 'd03_pulse_rate_range', 'd03_temp_avg',
# 'd05_lft_protein', 'd05_lymp', 'd03_intake_diff', 'd03_temp_range',
# 'age', 'd03_pulse_rate_avg', 'd03_hct_avg', 'd04_itching',
# 'd05_platelet', 'd04_abdominal', 'd03_temp_max', 'd04_diarrhea',
# 'd04_maculo', 'd04_limbus', 'd05_atyp', 'd04_mental',
# 'd01_abdominal_day', 'd05_eosin', 'd04_ab_circum', 'd03_temp_min',
# 'd01_myalgia_day', 'd05_lft_ast', 'd04_clear']
feature_list = ['dhf_dx', 'd04_diarrhea', 'd04_abdominal', 'd04_itching', 'd05_atyp',
'd04_injected', 'd01_myalgia_day', 'd05_band', 'd03_intake_diff',
'd04_clear', 'd05_eosin', 'd03_pulse_rate_range', 'd03_hct_avg',
'd05_lymp', 'd05_pmn', 'd03_temp_min', 'd05_lft_protein', 'd05_ast_alt',
'd05_sgot_platelet_ratio', 'd04_ab_circum', 'fever_day', 'd03_pulse_pre_min', 'dhf_dx', 'd05_lymp',
'd05_lft_protein',
'd04_clear', 'd01_height', 'd03_temp_range', 'd03_pulse_rate_avg',
'd04_itching', 'd05_pmn', 'd05_platelet', 'age', 'd04_abdominal',
'd04_maculo', 'd05_atyp', 'd01_abdominal_day', 'd03_hct_max', 'd04_mental', 'd01_exud_day',
'd04_diarrhea', 'd05_band', 'd03_temp_avg', 'd04_limbus',
'd04_quantity', 'd01_vomit_bleed_day', 'd01_prod_day', 'd01_gum_day', 'd05_mono', 'd01_myalgia_day',
'd04_ab_circum',
'd03_intake_diff', 'd05_eosin', 'd03_temp_min', 'd01_feeling_day',
'fever_day', 'd03_pulse_rate_range', 'd05_ast_alt', 'd04_lymph', ]
# day 3
# feature_list = list({'d03_temp_min_2',
# 'd05_ast_alt_2',
# 'fever_day',
# 'd05_band_1',
# 'd04_ab_circum_d',
# 'd05_lft_ast_2',
# 'd05_lft_ast_1',
# 'd04_ab_circum_2',
# 'd05_lft_alt_2',
# 'd03_temp_min_m',
# 'd05_lft_alt_1',
# 'd03_pulse_pre_min_2',
# 'd04_diarrhea_2',
# 'd04_ab_circum_3',
# 'd05_eosin_2',
# 'd05_lft_alt_d',
# 'd03_hct_avg_1',
# 'd05_band_2',
# 'd05_ast_alt_d',
# 'd05_eosin_3',
# 'd05_ast_alt_1',
# 'd05_lymp_d',
# 'd05_pmn_3',
# 'd03_pulse_pre_min_d',
# 'd04_injected_1',
# 'd04_abdominal_1',
# 'd04_itching_1',
# 'd05_eosin_1',
# 'd05_pmn_1',
# 'd04_clear_1',
# 'd03_pulse_pre_min_1',
# 'd03_pulse_rate_range_3',
# 'd04_abdominal_2',
# 'd03_pulse_rate_range_1',
# 'd05_atyp_2',
# 'd05_lft_protein_d',
# 'd03_temp_min_d',
# 'd05_ast_alt_m',
# 'd05_lymp_1',
# 'd04_itching_2',
# 'd04_itching_3',
# 'd04_injected_2',
# 'd04_diarrhea_1',
# 'd03_pulse_pre_min_3',
# 'd04_diarrhea_3',
# 'd04_injected_3',
# 'd03_temp_min_1',
# 'd05_lft_protein_1',
# 'd05_pmn_2',
# 'd05_band_3',
# 'd03_pulse_rate_range_2',
# 'd03_hct_avg_d',
# 'd03_hct_avg_2',
# 'd03_intake_diff_2',
# 'd03_intake_diff_1',
# 'd05_lft_protein_2',
# 'd04_ab_circum_1',
# 'd04_abdominal_d',
# 'd03_temp_min_3',
# 'd05_lymp_2',
# 'd05_ast_alt_3',
# 'd03_hct_avg_3',
# 'd04_abdominal_3',
# 'd05_lymp_3',
# 'd05_lft_protein_3',
# 'd03_intake_diff_3', 'dhf_dx'
# })
feature_list.extend(list(select_features(data, "dhf_dx", n=50)['Features']))
return list(set(feature_list))
# return feature_list
def best_edges(day=3):
if day == 3:
return [
('dhf_dx', 'd04_diarrhea'),
('dhf_dx', 'd04_abdominal'),
('dhf_dx', 'd04_itching'),
('dhf_dx', 'd05_atyp'),
('dhf_dx', 'd04_injected'),
('dhf_dx', 'd01_myalgia_day'),
('dhf_dx', 'd05_band'),
('dhf_dx', 'd03_intake_diff'),
('dhf_dx', 'd04_clear'),
('dhf_dx', 'd05_eosin'),
('dhf_dx', 'd03_pulse_rate_range'),
('dhf_dx', 'd03_hct_avg'),
('dhf_dx', 'd05_lymp'),
('dhf_dx', 'd05_pmn'),
('dhf_dx', 'd03_temp_min'),
('dhf_dx', 'd05_lft_protein'),
('dhf_dx', 'd05_ast_alt'),
('dhf_dx', 'd05_sgot_platelet_ratio'),
('dhf_dx', 'd04_ab_circum'),
("dhf_dx", "fever_day"),
('fever_day', 'd05_sgot_platelet_ratio'),
('fever_day', 'd04_abdominal'),
('fever_day', 'd04_injected'),
('fever_day', 'd04_itching'),
]
def discretizer(dataframe):
bins = {}
for c in check_continues_features(dataframe):
b, d = discretize_data(dataframe, c, "dhf_dx")
bins[c] = b
# print(c, " : ", b)
dataframe[c] = d
for i in dataframe.dtypes.keys():
if dataframe.dtypes[i] == 'category':
dataframe[i] = dataframe[i].cat.codes
return dataframe
if __name__ == '__main__':
report = []
# features_impacts['model_performance'] = []
model_performance = []
data = read_data('../Data/data_final - Ordered.csv')
features = all_features(data)
# features += ['dhf_dx']
# features.remove("d05_sgot_sgpt_ratio")
# features.remove("dengue_dx")
# features.remove("d05_alb_globn_ratio")
data = data[features]
data = discretizer(data)
# X = data[[f for f in data.columns if f != "dhf_dx"]]
# y = data['dhf_dx']
# ix = None
# we add an integer to feature list just for getting all features in first step
features.insert(0, 1)
# parent = 'd03_temp_min'
features.remove('dhf_dx')
noisy_feat = []
edges = []
for j, f in enumerate(features):
df = data.copy()
print("=" * 20)
print(f'length of features before elimination: {len(df.columns)}')
fig, ax = plt.subplots(figsize=(10, 10))
# this part is for feature selection
################################################
if f in df.columns:
df = df.drop([f], axis=1)
print(f'removed {f} length of features : {len(df.columns)}')
if len(noisy_feat) > 0:
for noisy in noisy_feat:
df = df.drop([noisy], axis=1)
print("=" * 10, f"deleted {noisy} ", len(df.columns), "=" * 10)
##########################################################
# this is for fever_day nodes
# print("=" * 20)
#
# if f in df.columns:
# if f != parent and f != "dhf_dx":
# ed = edge_builder([f], parent, [])
# print(f"added {ed[0]}")
# edges.append(ed[0])
# if len(noisy_feat) > 0:
# for noisy in noisy_feat:
# try:
# edges.remove(noisy)
# print("=" * 10, f"deleted {noisy} ", len(edges), "=" * 10)
# except:
# pass
print("=" * 20)
# arcs = edge_builder(df.columns, 'dhf_dx', edges)
# arcs = best_edges(3)
# arcs += edges
# model = BayesianModel(arcs)
# print("=" * 10, "edge_length", len(model.edges), "=" * 10)
classifier = CategoricalNB()
accuracies = []
tprs = []
mean_fpr = np.linspace(0, 1, 100)
name = f'model_{j}'
rs = ShuffleSplit(n_splits=5, test_size=.25, random_state=0)
count = 0
# forward selection in between:
l = (len(df.columns) - 1)
X = df.drop(['dhf_dx'], axis=1)
y = df[['dhf_dx']]
# sfs = SFS(CategoricalNB(),
# k_features=l,
# forward=True,
# floating=True,
# # scoring='neg_mean_squared_error',
# scoring='accuracy',
# cv=3)
# sfs.fit(X, y)
# df_SFS_results = pd.DataFrame(sfs.subsets_).transpose()
# df2 = df[list(
# df_SFS_results[(df_SFS_results['avg_score'] == df_SFS_results['avg_score'].max())]['feature_names'].values[
# 0])]
# df2 = df.iloc[:, list(sfs.k_feature_idx_)]
# df2["dhf_dx"] = df["dhf_dx"]
# Backward cross validation:
for train_index, test_index in rs.split(df):
X_train = df.iloc[train_index]
y_train = X_train[["dhf_dx"]]
X_train = X_train.drop(['dhf_dx'], axis=1)
x_test = df.iloc[test_index]
y_test = np.array(x_test[["dhf_dx"]].values)
X_test = x_test.drop(["dhf_dx"], axis=1)
classifier.fit(X_train.values, y_train)
viz = RocCurveDisplay.from_estimator(
classifier,
X_test,
y_test,
name="ROC fold {}".format(count),
alpha=0.3,
lw=1,
ax=ax,
)
interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr)
interp_tpr[0] = 0.0
tprs.append(interp_tpr)
accuracies.append(viz.roc_auc)
count += 1
# ev_f = [n for n in model.nodes() if n != "dhf_dx"]
# cross validation:
# count = 0
# for train_index, test_index in rs.split(df):
# X_train = df.iloc[train_index]
# X_test = df.iloc[test_index]
# x_test = X_test[[col for col in X_test.columns if col != "dhf_dx"]]
# y_test = np.array(X_test[["dhf_dx"]].values)
# # training:
# model.fit(X_train, estimator=BayesianEstimator)
# # res = check_network(X_test, model, ev_f)
# # evaluation
#
# writer = XMLBIFWriter(model)
# writer.write_xmlbif(f'models/{model_name}.xml')
# # writer = XBNWriter(model = model)
# t = [[name + '_' + str(count), y_test, res]]
# auc = roc_auc(t)
# accuracies.append(auc)
# count += 1
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
accuracy_mean = auc(mean_fpr, mean_tpr)
if len(model_performance) > 0:
max_acc = max(model_performance)
# features_impacts[name] = max_acc - accuracy_mean
feature_impact = max_acc - accuracy_mean
if feature_impact < 0.0:
noisy_feat.append(f)
report.append(
{"name": name, "acc": accuracy_mean, "impact": feature_impact, "featurse": df.columns, 'feature': f,
'n': len(df.columns)})
with open('models/d1_perform.pickle', 'wb') as handle:
pickle.dump(report, handle, protocol=pickle.HIGHEST_PROTOCOL)
print(
'=======================================================================================================')
print(f'model name: {name} performance {accuracy_mean}, features_length: {len(df.columns)} ,\
diffrence:{feature_impact} \n , max_acc: {max_acc}')
print(
'=======================================================================================================')
model_performance.append(accuracy_mean)