forked from knaughten/roms_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfix_isolated_points.py
183 lines (161 loc) · 5.86 KB
/
fix_isolated_points.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from netCDF4 import Dataset
from numpy import *
# Based on the results of find_isolated_points.py, fix all the points which
# are isolated on 3 sides in the CICE grid, by editing the ROMS grid. Set some
# of them to ice shelf points (with zice the average of the correct neighbour
# values), some to land points, remove the ice shelves on others, and make other
# land points ocean points (with h the average of the correct neighbour values).
# After running this script, rerun cice_grid.py to update the CICE grid.
# This script is grid-specific and manually written. If you are editing it
# for a new grid, make sure you take into account the ghost cells in ROMS
# and CICE: point (i,j) in CICE is point (i+1,j+1) in ROMS.
def fix_isolated_pts ():
# Path to ROMS grid file
grid_file = '../metroms_iceshelf/apps/common/grid/circ30S_quarterdegree_tmp.nc'
# Read the relevant fields
id = Dataset(grid_file, 'a')
mask_rho = id.variables['mask_rho'][:,:]
h = id.variables['h'][:,:] # Fill value 50
mask_zice = id.variables['mask_zice'][:,:]
zice = id.variables['zice'][:,:]
# Set as ice shelf, average of i-1, j-1, j+1
i_vals = [1162, 1179, 430, 1184]
j_vals = [131, 177, 183, 201]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 1
zice[j,i] = mean(array([zice[j,i-1], zice[j-1,i], zice[j+1,i]]))
# Set as ice shelf, average of i-1, i+1, j-1
i_vals = [1291, 1311, 64, 2, 296, 1426, 1375, 1386, 1422, 1106, 1125, 1054, 406]
j_vals = [85, 95, 103, 116, 118, 123, 124, 125, 125, 157, 157, 171, 181]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 1
zice[j,i] = mean(array([zice[j,i-1], zice[j,i+1], zice[j-1,i]]))
# Set as ice shelf, average of i-1, i+1
i_vals = [92, 12]
j_vals = [93, 113]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 1
zice[j,i] = mean(array([zice[j,i-1], zice[j,i+1]]))
# Set as ice shelf, average of i+1, j-1, j+1
i_vals = [714, 850, 1131]
j_vals = [101, 131, 176]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 1
zice[j,i] = mean(array([zice[j,i+1], zice[j-1,i], zice[j+1,i]]))
# Set as ice shelf, average of i+1, j-1
i_vals = [1110]
j_vals = [158]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 1
zice[j,i] = mean(array([zice[j,i+1], zice[j-1,i]]))
# Set as ice shelf, average of i+1, j+1
i_vals = [1023, 1129]
j_vals = [164, 165]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 1
zice[j,i] = mean(array([zice[j,i+1], zice[j+1,i]]))
# Set as ice shelf, average of i-1, j+1
i_vals = [1178]
j_vals = [171]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 1
zice[j,i] = mean(array([zice[j,i-1], zice[j+1,i]]))
# Set as ice shelf, average of i+1, j-1
i_vals = [665, 1136, 596]
j_vals = [178, 188, 197]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 1
zice[j,i] = mean(array([zice[j,i+1], zice[j-1,i]]))
# Set as ice shelf, average of i-1, j-1
i_vals = [516]
j_vals = [190]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 1
zice[j,i] = mean(array([zice[j,i-1], zice[j-1,i]]))
# Set as ice shelf, same as j-1
i_vals = [1157, 1122]
j_vals = [192, 158]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 1
zice[j,i] = zice[j-1,i]
# Set as land
i_vals = [326, 182, 241, 204, 205, 233, 1099, 1099, 1130, 508, 624, 1138, 1143, 1159, 1163, 1166, 1169, 1172, 1183, 1194, 1180, 1199, 1203, 1202, 1184, 1209, 1210]
j_vals = [117, 127, 135, 136, 137, 139, 159, 160, 179, 187, 187, 189, 195, 197, 207, 212, 216, 217, 222, 228, 229, 229, 230, 231, 232, 235, 235]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_rho[j,i] = 0
h[j,i] = 50.0
# Remove ice shelf
i_vals = [841, 853, 853, 691, 395]
j_vals = [131, 135, 138, 142, 178]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_zice[j,i] = 0
zice[j,i] = 0.0
# Remove land, h average of i+1, j-1, j+1
i_vals = [1157, 1158]
j_vals = [206, 209]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_rho[j,i] = 1
h[j,i] = mean(array([h[j,i+1], h[j-1,i], h[j+1,i]]))
# Remove land, h average of i-1, i+1, j-1, j+1
i_vals = [1159, 1160]
j_vals = [202, 211]
num_pts = len(i_vals)
for n in range(num_pts):
i = i_vals[n]-1
j = j_vals[n]-1
mask_rho[j,i] = 1
h[j,i] = mean(array([h[j,i-1], h[j,i+1], h[j-1,i], h[j+1,i]]))
# Calculate new land mask for u, v, psi grids
mask_u = mask_rho[:,1:]*mask_rho[:,:-1]
mask_v = mask_rho[1:,:]*mask_rho[:-1,:]
mask_psi = mask_rho[1:,1:]*mask_rho[:-1,1:]*mask_rho[1:,:-1]*mask_rho[:-1,:-1]
# Save new fields
id.variables['mask_rho'][:,:] = mask_rho
id.variables['mask_u'][:,:] = mask_u
id.variables['mask_v'][:,:] = mask_v
id.variables['h'][:,:] = h
id.variables['mask_zice'][:,:] = mask_zice
id.variables['zice'][:,:] = zice
id.close()
# Command-line interface
if __name__ == "__main__":
fix_isolated_pts()