From 0ad66ad89f3fa3a295d21b828b3a5755994d846e Mon Sep 17 00:00:00 2001 From: rayrayraykk <18007356109@163.com> Date: Fri, 5 Aug 2022 14:24:43 +0800 Subject: [PATCH 1/3] fix update round-wise key --- benchmark/FedHPOB/misc/grid_search.py | 0 benchmark/FedHPOB/scripts/lr/twitter.yaml | 36 +++++++++++++++++++ federatedscope/core/monitors/monitor.py | 3 +- .../nlp/baseline/fedavg_lr_on_twitter.yaml | 8 +++-- 4 files changed, 43 insertions(+), 4 deletions(-) create mode 100644 benchmark/FedHPOB/misc/grid_search.py create mode 100644 benchmark/FedHPOB/scripts/lr/twitter.yaml diff --git a/benchmark/FedHPOB/misc/grid_search.py b/benchmark/FedHPOB/misc/grid_search.py new file mode 100644 index 000000000..e69de29bb diff --git a/benchmark/FedHPOB/scripts/lr/twitter.yaml b/benchmark/FedHPOB/scripts/lr/twitter.yaml new file mode 100644 index 000000000..3faef4043 --- /dev/null +++ b/benchmark/FedHPOB/scripts/lr/twitter.yaml @@ -0,0 +1,36 @@ +use_gpu: True +device: 0 +early_stop: + patience: 5 +federate: + mode: standalone + total_round_num: 100 + sample_client_num: 10 + make_global_eval: True + merge_test_data: True + share_local_model: True + online_aggr: True +data: + root: data/ + type: twitter + batch_size: 5 + subsample: 0.005 + num_workers: 0 +model: + type: lr + out_channels: 2 + dropout: 0.0 +train: + local_update_steps: 10 + optimizer: + lr: 0.0003 + weight_decay: 0.0 +criterion: + type: CrossEntropyLoss +trainer: + type: nlptrainer +eval: + freq: 1 + metrics: ['acc', 'correct', 'f1'] + split: [ 'train' ] + best_res_update_round_wise_key: 'train_loss' \ No newline at end of file diff --git a/federatedscope/core/monitors/monitor.py b/federatedscope/core/monitors/monitor.py index 020333608..46efb5f22 100644 --- a/federatedscope/core/monitors/monitor.py +++ b/federatedscope/core/monitors/monitor.py @@ -541,7 +541,8 @@ def update_best_result(self, if round_wise_update_key not in [ "val_loss", "test_loss", "loss", "val_avg_loss", "test_avg_loss", "avg_loss", "test_acc", "test_std", - "val_acc", "val_std", "val_imp_ratio" + "val_acc", "val_std", "val_imp_ratio", "train_loss", + "train_avg_loss" ]: raise NotImplementedError( f"We currently support round_wise_update_key as one " diff --git a/federatedscope/nlp/baseline/fedavg_lr_on_twitter.yaml b/federatedscope/nlp/baseline/fedavg_lr_on_twitter.yaml index 4f0656cdf..b510ed79f 100644 --- a/federatedscope/nlp/baseline/fedavg_lr_on_twitter.yaml +++ b/federatedscope/nlp/baseline/fedavg_lr_on_twitter.yaml @@ -6,6 +6,8 @@ federate: mode: standalone total_round_num: 100 sample_client_num: 10 + share_local_model: True + online_aggr: True data: root: data/ type: twitter @@ -26,7 +28,7 @@ criterion: trainer: type: nlptrainer eval: - freq: 10 - metrics: ['acc', 'correct'] - split: ['train'] + freq: 1 + metrics: ['acc', 'correct', 'f1'] + split: [ 'train' ] best_res_update_round_wise_key: 'train_loss' \ No newline at end of file From 57fba7d0d629e582a51c3cc3cf033c3eca8e3aef Mon Sep 17 00:00:00 2001 From: rayrayraykk <18007356109@163.com> Date: Fri, 5 Aug 2022 15:28:59 +0800 Subject: [PATCH 2/3] fix merge test --- .../FedHPOB/scripts/lr/run_hpo_twitter_lr.sh | 42 +++++++++++++++++++ benchmark/FedHPOB/scripts/lr/twitter.yaml | 10 ++--- .../core/auxiliaries/data_builder.py | 28 ++++++++++--- federatedscope/cv/dataset/leaf.py | 6 ++- 4 files changed, 74 insertions(+), 12 deletions(-) create mode 100644 benchmark/FedHPOB/scripts/lr/run_hpo_twitter_lr.sh diff --git a/benchmark/FedHPOB/scripts/lr/run_hpo_twitter_lr.sh b/benchmark/FedHPOB/scripts/lr/run_hpo_twitter_lr.sh new file mode 100644 index 000000000..db22875f9 --- /dev/null +++ b/benchmark/FedHPOB/scripts/lr/run_hpo_twitter_lr.sh @@ -0,0 +1,42 @@ +set -e + +cudaid=$1 +dataset=$2 + +cd ../.. + +out_dir=out_${dataset} + +if [ ! -d $out_dir ];then + mkdir $out_dir +fi + +echo "HPO starts..." + +sample_rates=(0.01) +lrs=(0.00001 0.0001 0.001 0.01 0.1 1.0) +wds=(0.0 0.001 0.01 0.1) +steps=(1 2 3 4) +batch_sizes=(64) + +for (( sr=0; sr<${#sample_rates[@]}; sr++ )) +do + for (( l=0; l<${#lrs[@]}; l++ )) + do + for (( w=0; w<${#wds[@]}; w++ )) + do + for (( s=0; s<${#steps[@]}; s++ )) + do + for (( b=0; b<${#batch_sizes[@]}; b++ )) + do + for k in {1..3} + do + python federatedscope/main.py --cfg fedhpo/openml/openml_lr.yaml device $cudaid optimizer.lr ${lrs[$l]} optimizer.weight_decay ${wds[$w]} federate.local_update_steps ${steps[$s]} data.type ${dataset}@openml data.batch_size ${batch_sizes[$b]} federate.sample_client_rate ${sample_rates[$sr]} model.out_channels $out_channels seed $k outdir lr/${out_dir}_${sample_rates[$sr]} expname lr${lrs[$l]}_wd${wds[$w]}_dropout0_step${steps[$s]}_batch${batch_sizes[$b]}_seed${k} >/dev/null 2>&1 + done + done + done + done + done +done + +echo "HPO ends." diff --git a/benchmark/FedHPOB/scripts/lr/twitter.yaml b/benchmark/FedHPOB/scripts/lr/twitter.yaml index 3faef4043..37c37600b 100644 --- a/benchmark/FedHPOB/scripts/lr/twitter.yaml +++ b/benchmark/FedHPOB/scripts/lr/twitter.yaml @@ -1,11 +1,11 @@ use_gpu: True device: 0 early_stop: - patience: 5 + patience: 100 federate: mode: standalone - total_round_num: 100 - sample_client_num: 10 + total_round_num: 500 + sample_client_rate: 0.01 make_global_eval: True merge_test_data: True share_local_model: True @@ -32,5 +32,5 @@ trainer: eval: freq: 1 metrics: ['acc', 'correct', 'f1'] - split: [ 'train' ] - best_res_update_round_wise_key: 'train_loss' \ No newline at end of file + split: [ 'test' ] + best_res_update_round_wise_key: 'test_loss' \ No newline at end of file diff --git a/federatedscope/core/auxiliaries/data_builder.py b/federatedscope/core/auxiliaries/data_builder.py index d14c7f238..87faefddc 100644 --- a/federatedscope/core/auxiliaries/data_builder.py +++ b/federatedscope/core/auxiliaries/data_builder.py @@ -644,11 +644,19 @@ def merge_data(all_data, merged_max_data_id, specified_dataset_name=None): assert len(dataset_names) >= 1, \ "At least one sub-dataset is required in client 1" data_name = "test" if "test" in dataset_names else dataset_names[0] - if isinstance(all_data[1][data_name], dict): - data_elem_names = list(all_data[1][data_name].keys()) # e.g., x, y + id_has_key = 1 + while "test" not in all_data[id_has_key]: + id_has_key += 1 + if len(all_data) <= id_has_key: + raise KeyError(f'All data do not key {data_name}.') + if isinstance(all_data[id_has_key][data_name], dict): + data_elem_names = list( + all_data[id_has_key][data_name].keys()) # e.g., x, y merged_data = {name: defaultdict(list) for name in dataset_names} for data_id in range(1, merged_max_data_id): for d_name in dataset_names: + if d_name not in all_data[data_id]: + continue for elem_name in data_elem_names: merged_data[d_name][elem_name].append( all_data[data_id][d_name][elem_name]) @@ -656,16 +664,24 @@ def merge_data(all_data, merged_max_data_id, specified_dataset_name=None): for elem_name in data_elem_names: merged_data[d_name][elem_name] = np.concatenate( merged_data[d_name][elem_name]) - elif issubclass(type(all_data[1][data_name]), torch.utils.data.DataLoader): - merged_data = {name: all_data[1][name] for name in dataset_names} - for data_id in range(2, merged_max_data_id): + elif issubclass(type(all_data[id_has_key][data_name]), + torch.utils.data.DataLoader): + merged_data = { + name: all_data[id_has_key][name] + for name in dataset_names + } + for data_id in range(1, merged_max_data_id): + if data_id == id_has_key: + continue for d_name in dataset_names: + if d_name not in all_data[data_id]: + continue merged_data[d_name].dataset.extend( all_data[data_id][d_name].dataset) else: raise NotImplementedError( "Un-supported type when merging data across different clients." - f"Your data type is {type(all_data[1][data_name])}. " + f"Your data type is {type(all_data[id_has_key][data_name])}. " f"Currently we only support the following forms: " " 1): {data_id: {train: {x:ndarray, y:ndarray}} }" " 2): {data_id: {train: DataLoader }") diff --git a/federatedscope/cv/dataset/leaf.py b/federatedscope/cv/dataset/leaf.py index 58929f54a..eb253e2d5 100644 --- a/federatedscope/cv/dataset/leaf.py +++ b/federatedscope/cv/dataset/leaf.py @@ -91,7 +91,7 @@ def process(self): class LocalDataset(Dataset): """ - Convert data list to torch Dataset to save memory usage. + Convert data list to torch Dataset to save memory usage. """ def __init__(self, Xs, @@ -122,3 +122,7 @@ def __getitem__(self, idx): target = self.target_transform(target) return data, target + + def extend(self, dataset): + self.Xs = np.vstack((self.Xs, dataset.Xs)) + self.targets = np.hstack((self.targets, dataset.targets)) From 1b7cccd248bde293f95aa134078c426eff643582 Mon Sep 17 00:00:00 2001 From: rayrayraykk <18007356109@163.com> Date: Fri, 5 Aug 2022 15:41:30 +0800 Subject: [PATCH 3/3] remove empty file --- benchmark/FedHPOB/misc/grid_search.py | 0 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 benchmark/FedHPOB/misc/grid_search.py diff --git a/benchmark/FedHPOB/misc/grid_search.py b/benchmark/FedHPOB/misc/grid_search.py deleted file mode 100644 index e69de29bb..000000000