-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBLE_VAE.py
203 lines (166 loc) · 7.29 KB
/
BLE_VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# code inspired from: https://keras.io/examples/generative/vae/
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
import os
import pandas as pd
from collections import Counter
from imblearn.datasets import make_imbalance
from keras.models import load_model
from keras.utils import to_categorical
from sklearn.utils import shuffle
class Sampling(layers.Layer):
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
latent_dim = 2
encoder_inputs = keras.Input(shape=(30, 30, 1))
x = layers.Conv2D(8, 4, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(16, 4, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(8, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()([z_mean, z_log_var])
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
encoder.summary()
latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(8 * 8 * 16, activation="relu")(latent_inputs)
x = layers.Reshape((8, 8, 16))(x)
x = layers.Conv2DTranspose(16, 4, activation="relu", strides=2, padding="same", output_padding=1)(x)
x = layers.Conv2DTranspose(8, 4, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
decoder.summary()
class VAE(keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = keras.metrics.Mean(
name="reconstruction_loss"
)
self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")
@property
def metrics(self):
return [
self.total_loss_tracker,
self.reconstruction_loss_tracker,
self.kl_loss_tracker,
]
def train_step(self, data):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.reduce_sum(
keras.losses.binary_crossentropy(data, reconstruction), axis=(1, 2)
)
)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
def test_step(self, data):
if isinstance(data, tuple):
data = data[0]
z_mean, z_log_var, z = encoder(data)
reconstruction = decoder(z)
reconstruction_loss = tf.reduce_mean(
keras.losses.binary_crossentropy(data, reconstruction)
)
reconstruction_loss *= 30 * 30
kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)
kl_loss = tf.reduce_mean(kl_loss)
kl_loss *= -0.5
total_loss = reconstruction_loss + kl_loss
return {
"loss": total_loss,
"reconstruction_loss": reconstruction_loss,
"kl_loss": kl_loss,
}
minorities = [int(0), int(4), int(5)]
for minority in minorities:
os.chdir('/content/gdrive/My Drive/training_testing_data/')
train = pd.read_csv('train_data_rp_3_IMBALANCED.csv')
train.columns = [*train.columns[:-1], 'zone']
train = train[train['zone'] == minority]
train = train.sample(frac=1).reset_index(drop=True)
x_train = train.iloc[:, :-1]
x_train = x_train.values
Y_train = train.iloc[:, -1:]
Y_train = Y_train.values
x_train = x_train.reshape((x_train.shape[0], 30, 30, 1))
vae = VAE(encoder, decoder)
vae.compile(optimizer=keras.optimizers.Adam(learning_rate=0.0001))
my_callbacks = [EarlyStopping(patience=3000), ModelCheckpoint('model_vae.h5', monitor='val_loss', verbose=2,
save_best_only=True)]
vae.fit(x_train, epochs=30000, batch_size=23, verbose=2, callbacks=my_callbacks, shuffle='TRUE',
validation_split=0.1)
decoder.save('VAE_DECODER_model_900_CNN_' + str(minority) + '.h5')
print(str(minority) + "DONE...")
os.chdir('/content/gdrive/My Drive/training_testing_data/')
n_pixels = 900
train = pd.read_csv('train_data_rp_3_IMBALANCED.csv')
x_train = train.iloc[:, :-1]
x_train = x_train.values
y_train = train.iloc[:, -1:]
y_train = y_train.values
train_imbalanced = np.hstack([x_train, y_train])
def sample_latent_space(minority):
print("working on minority: ", minority)
n_sample = 6732
mu, sigma = 0.0, 1.0
z1 = np.random.normal(mu, sigma, n_sample)
z2 = np.random.normal(mu, sigma, n_sample)
decoder = load_model('VAE_DECODER_model_900_CNN_' + str(minority) + '.h5')
decoded_all = np.zeros((1, n_pixels))
for i in range(len(z1)):
z_sample = np.array([[z1[i], z2[i]]])
x_decoded = decoder.predict(z_sample)
decoded = x_decoded.reshape((1, n_pixels))
decoded_all = np.vstack([decoded_all, decoded])
decoded_all = np.delete(decoded_all, (0), axis=0)
zones = np.ones((6732, 1))
zones = zones * minority
decoded_all = np.hstack([decoded_all, zones])
decoded_all = pd.DataFrame(decoded_all)
decoded_all.to_csv('train_data_rp_3_VAE_' + str(minority) + '.csv', index=False)
Y_vae = decoded_all.iloc[:, -1:]
Y_vae = Y_vae.values
Y_vae = Y_vae.reshape((Y_vae.shape[0],))
print(sorted(Counter(Y_vae).items()))
for minority in minorities:
sample_latent_space(minority)
npa_all = np.zeros((1, n_pixels + 1))
for minority in minorities:
df = pd.read_csv('train_data_rp_3_VAE_' + str(minority) + '.csv')
npa = df.values
npa_all = np.vstack([npa_all, npa])
npa_all = np.delete(npa_all, (0), axis=0)
npa_all = np.vstack([npa_all, train_imbalanced])
npa_all = shuffle(npa_all)
print(npa_all.shape)
train_VAE = pd.DataFrame(npa_all)
train_VAE.to_csv('train_data_rp_3_VAE.csv', index=False)
Y_vae = train_VAE.iloc[:, -1:]
Y_vae = Y_vae.values
Y_vae = Y_vae.reshape((Y_vae.shape[0],))
print("ALL:", sorted(Counter(Y_vae).items()))
print("ALL: DONE...")