-
Notifications
You must be signed in to change notification settings - Fork 26
/
gem_backtest.py
executable file
·363 lines (309 loc) · 16 KB
/
gem_backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import datetime
import pandas
import math
import matplotlib.pyplot as plt
from matplotlib import interactive
# load datasets
monthlies1970 = pandas.read_csv('msci_all_gross.csv', thousands=",", decimal=".", index_col=0, skiprows=2,
parse_dates=True)
monthlies1926 = pandas.read_csv('monthly_1926.csv', thousands=",", decimal=".", index_col=0, skiprows=2,
parse_dates=True)
# analyze an investment resultset "result", dates provides in "monthlies"
def analyze_run(result, monthlies, bDetails):
if (bDetails): print ("--------------------------------------------------------------------------------------------------------")
if (bDetails): print ("Min and Max returns by duration")
if (bDetails): print ("--------------------------------------------------------------------------------------------------------")
bounds = []
for dur in range(1, 482):
gain_min = +100000000000.
gain_max = -100000000000.
gain_avg = 0.
dmin = 0
for win in range(0, len(result) - dur - 1):
gain = (result[win + dur] - result[win]) / result[win]
if gain < gain_min:
dmin = win
gain_min = gain
if gain > gain_max:
gain_max = gain
gain_avg=gain_avg+gain
gain_avg=gain_avg/(len(result)-dur-1)
bounds.append({'min': gain_min, 'mindate': dmin, 'avg':gain_avg, 'max':gain_max})
if dur % 12 == 0 and bDetails:
print ("%3d months (%4.1f years; date: %s): %7.1f%%-%7.1f%% (%6.2f%%-%6.2f%% annual return; %6.2f%% avg)" % \
(dur, dur / 12., str(monthlies[dmin])[0:10], gain_min * 100., gain_max * 100.,
(math.pow(1. + gain_min, 12. / dur) - 1) * 100.,
(math.pow(1. + gain_max, 12. / dur) - 1) * 100.,
(math.pow(1. + gain_avg, 12. / dur) - 1) * 100.))
if (bDetails): print ("--------------------------------------------------------------------------------------------------------")
if (bDetails): print ("Worst case returns by duration")
if (bDetails): print ("--------------------------------------------------------------------------------------------------------")
worstTotal = []
worstAnnualized = []
worstStart = []
avgAnnualized=[]
for dur in range(1, 481):
gain_min = math.pow(1. + bounds[dur]['min'], 12. / dur) - 1
gain_avg = math.pow(1. + bounds[dur]['avg'], 12. / dur) - 1
dur_min = bounds[dur]['mindate']
for dur2 in range(dur, 481):
if math.pow(1. + bounds[dur2]['min'], 12. / dur2) - 1 < gain_min:
dur_min = bounds[dur2]['mindate']
gain_min = math.pow(1. + bounds[dur2]['min'], 12. / dur2) - 1
if dur % 12 == 0 and bDetails:
print ("%3d months (%4.1f years; date: %s): %6.1f%% (%6.2f%% annual return; %6.2f%% avg annual return)" % \
(dur, dur / 12., str(monthlies[dur_min])[0:10],
(math.pow(1 + gain_min, dur / 12.) - 1) * 100., gain_min * 100., gain_avg*100.) )
if dur % 120 == 0:
worstTotal.append((math.pow(1 + gain_min, dur / 12.) - 1) * 100.)
worstAnnualized.append(gain_min * 100.)
worstStart.append(str(monthlies[dur_min])[0:10])
avgAnnualized.append(gain_avg * 100.)
maxdown_pct = 0 # max drawdown in %
maxdown_pct_end = 0 # when max drawdown by % ends
maxdown_pct_start = 0 # start of max drawdown in %
curdown_pct_start = 0 # start of current drawdown by % stretch
maxdown_len = 0 # longest drawdown stretch
maxdown_len_start = 0 # start of longest drawdown stretch
curdown_len_start = 0 # start of current drawdown by duration stretch
for d in range(0, len(result) - 1):
# first find longest downstretch
if result[d] < result[curdown_len_start]: # still in down-stretch?
if maxdown_len < d - curdown_len_start: # longest down-stretch found so far?
maxdown_len = d - curdown_len_start
maxdown_len_start = curdown_len_start
else: # no more down-stretch, so reset
curdown_len_start = d
# now find maximum drawdown %
if result[d] < result[curdown_pct_start]: # still in down-stretch?
if (result[d] - result[curdown_pct_start]) / result[curdown_pct_start] < maxdown_pct:
maxdown_pct = (result[d] - result[curdown_pct_start]) / result[curdown_pct_start]
maxdown_pct_start = curdown_pct_start
maxdown_pct_end = d
else: # no more down-stretch. so reset
curdown_pct_start = d
years = (len(result)-1) / 12.
if bDetails:
print ("--------------------------------------------------------------------------------------------------------")
print ("Results:")
print ("- Return=%5.2f%% for %5.2f years (100K => %dM)" % (
(math.pow(result[-1] / result[0], 1 / years) - 1) * 100., years, result[-1] / result[0]) )
print ("- Maximum drawdown duration until full recovery=%.1f years; Start=%s" % (
maxdown_len / 12., str(monthlies[maxdown_len_start])[0:10]) )
print ("- Maximum drawdown by amount=%.2f%% for %.1f years (Start=%s, End=%s)" % (
maxdown_pct * 100., (maxdown_pct_end - maxdown_pct_start + 1) / 12.,
str(monthlies[maxdown_pct_start])[0:10], str(monthlies[maxdown_pct_end - 1])[0:10]) )
for i in range(0, len(worstTotal)):
print ("- Worst %d years: Start=%s Total=%6.1f%% Annual=%5.2f%%" % (
(i + 1) * 10, worstStart[i], worstTotal[i], worstAnnualized[i]) )
print ("--------------------------------------------------------------------------------------------------------")
all_result = [maxdown_len, maxdown_pct, (math.pow(result[-1] / result[0], 1 / years) - 1) * 100.]
for i in range(0, len(worstTotal)):
all_result.append(worstStart[i])
all_result.append(worstTotal[i])
all_result.append(worstAnnualized[i])
all_result.append(avgAnnualized[i])
all_result.append(result)
return all_result
#----------------------------------------------------------------------------------------------------------------
# one single run
# bDetails: Print detail results
# momentums: momentum ranges (divide money in portions) (-1=all bonds, -2 =all S&P500, -3=all foreign stocks, otherwise # of momentum months)
# b1970: start in 1970 or 1926. 1970 has foreign stocks, 1926 has not
# bInflationAdjusted: inflation adjusted results?
# bMovingAverage use moving average (in # of months) as extra safeguard for momentum based portions?
def run(bDetails, momentums, b1970, bInflationAdjusted, movingAverage, vigilant):
if b1970:
monthlies = monthlies1970
startdate = datetime.datetime(1970, 12, 1)
lastdate=datetime.datetime(2099,1,1)
foreign = 3
sp500 = 7
bonds = 10
inflation = 14
bills = 15
else:
monthlies = monthlies1926
startdate = datetime.datetime(1927, 1, 1) #1927 or higher
lastdate=datetime.datetime(2099,1,1)
foreign = 0
sp500 = 3
bonds = 6
bills = 9
inflation = 12
# moving averages
rm = monthlies.rolling(window=movingAverage, center=False).mean()
current_alloc = [] # fund and # of shares in fund (initially no allocations and just cash)
prev_cash = 100000.
result = [prev_cash] # sequence of monthly ending values, to derive statistics later on
# only if we calculate inflation-adjusted returns
prev_inflation = 0.
if (bDetails): print ("--------------------------------------------------------------------------------------------------------")
if (bDetails): print ("End-of-month decisions and value")
if (bDetails): print ("--------------------------------------------------------------------------------------------------------")
base = 0 # starting index
months=0
num_bonds=[0,0] # # of
for date in monthlies.index:
if date >= startdate and date<lastdate:
idx_now = monthlies.index.get_loc(date)
row_now = monthlies.iloc[idx_now]
row_rm = rm.iloc[rm.index.get_loc(date)]
# first calc final valuation at end of this month
cash = 0.
for pair in current_alloc:
if pair[1] != 0:
cash = cash + pair[1] * row_now[pair[0]]
if cash == 0.:
cash = prev_cash
# inflation adjusted cash
current_inflation = row_now[inflation]
if bInflationAdjusted and prev_inflation > 0:
cash = (prev_inflation / current_inflation) * cash
# 1 allocation per momentum duration
current_alloc = []
funds = ""
for m in momentums:
if m == -1: # use bonds for this subset
current = bonds
fund = "Bonds"
elif m == -2: # use all stocks for this subset
current = sp500
fund = "S&P500"
elif m == -3 and foreign > 0: # use all foreign for this subset, only for >1970
current = foreign
fund = "Foreign"
else: # use momentum to decide
row_prev = monthlies.iloc[idx_now - m]
m_foreign = 0
"""
if foreign > 0:
m_foreign = (math.pow(1 + (row_now[foreign] - row_prev[foreign]) / row_prev[foreign], 12 / m) - 1)
m_sp500 = (math.pow(1 + (row_now[sp500] - row_prev[sp500]) / row_prev[sp500], 12 / m) - 1)
m_bonds = (math.pow(1 + (row_now[bonds] - row_prev[bonds]) / row_prev[bonds], 12 / m) - 1)
m_bills = (math.pow(1 + (row_now[bills] - row_prev[bills]) / row_prev[bills], 12 / m) - 1)
"""
if foreign > 0:
m_foreign = (row_now[foreign] - row_prev[foreign]) / row_prev[foreign]
m_sp500 = (row_now[sp500] - row_prev[sp500]) / row_prev[sp500]
m_bonds = (row_now[bonds] - row_prev[bonds]) / row_prev[bonds]
m_bills = (row_now[bills] - row_prev[bills]) / row_prev[bills]
if (m_sp500 >= m_bills) and \
(not(vigilant) or m_bonds>=m_bills) and \
(movingAverage == 0 or row_rm[sp500] <= row_now[sp500]):
if foreign == 0 or m_sp500 >= m_foreign:
current = sp500
fund = "S&P500"
else:
current = foreign
fund = "Foreign"
else:
current = bonds
fund = "Bonds"
funds = funds + ("%8s" % fund)
num_shares = (cash / len(momentums)) / row_now[current]
current_alloc.append([current, num_shares])
months+=1
annualized=100*(math.pow(1 + (cash - 100000.) / 100000., 12 / months) - 1)
s = str(date)[0:10] + "%10.0f, %6.2f %6.2f (%s)" % \
(cash, (cash - prev_cash) * 100. / prev_cash, annualized , funds)
if (bDetails): print (s)
prev_cash = cash
result.append(cash)
prev_inflation = current_inflation
else:
base = base + 1
monthlies=monthlies[base-1:]
if bDetails:
print ("Input parameters:")
print ("- S&P500/Bonds (Absolute momentum) since" if not (
b1970) else "- S&P500/Foreign Stocks/Bonds (Dual momentum) since"), str(startdate)[0:10]
print ("- Inflation Adjusted" if bInflationAdjusted else "- Not inflation adjusted")
print ("- Moving Average Safeguard: %d" % movingAverage)
tranches = ""
for m in momentums:
if m == -1:
tranches = tranches + "Bonds "
elif m == -2:
tranches = tranches + "S&P500 "
elif m == -3:
tranches = tranches + "Foreign "
else:
tranches = tranches + ("Mom-%02d " % m)
print ("- Tranches: %s" % tranches)
print ("--------------------------------------------------------------------------------------------------------")
return [b1970, bInflationAdjusted, movingAverage, momentums, vigilant] + analyze_run(result, monthlies.index, bDetails)
#----------------------------------------------------------------------------------------------------------------
# set of scenarios, -2=bonds, -1=stocks, >0=momentum window
bDetails=False
# -2=all stocks
# -1=all bonds
# -1,-1,-2,-2,-2 = 60 stocks/40 bonds
# 12=GEM 12 months
# [6,12]= 50% GEM 6 months, 50% GEM 12 months
# 6=GEM 6 months
# -1,6,12= 33% bonds, 33% GEM 6 months, 33% GEM 12 months
momentum_set=[[-2], [-1], [-1, -1, -2, -2, -2], [12], [6,12], [6], [-1,6,12] ]
movingAverage_set=[0]
all_results=[]
for momentums in momentum_set:
for b1970 in [True,False]:
for bInflationAdjusted in [False,True]:
for bVigilant in [False,True]:
for movingAverage in movingAverage_set:
if not(movingAverage) or not(momentums in [[-1],[-2],[-1,-1,-2,-2,-2]]):
print ("%3d / %3d" % (len(all_results)+1, 2*2*2*len(movingAverage_set)*len(momentum_set)))
all_result=run(False,momentums,b1970,bInflationAdjusted,movingAverage,bVigilant)
all_results.append(all_result)
for bInflationAdjusted in [False,True]:
print ("=========================")
print ("Inflation Adjusted" if (bInflationAdjusted) else "Not inflation adjusted")
print ("=========================")
for b1970 in [True,False]:
print ("-----------------------------")
print ("Dual momentum since 1970" if b1970 else "Absolute momentum since 1926")
print ("-----------------------------")
print ("%30s : maxddyr maxdd%% Total%% Min10%% Min20%% Min30%% | Avg10%% Avg20%% Avg30%%" % ("allocation"))
print ("---------------------------------------------------------------------------------------------------------------")
for r in all_results:
for m in momentum_set:
for v in [False]:
for movingAverage in movingAverage_set:
if r[0] == b1970 and r[1] == bInflationAdjusted and r[2]==movingAverage and r[3]==m and r[4]==v:
print ("%30s%1s%2s: %6.1f %5.2f%% %5.2f%% %5.2f%% %5.2f%% %5.2f%% | %5.2f%% %5.2f%% %5.2f%%" % \
(str(m),('V' if v else ' '),( ('MA%02d'%movingAverage) if movingAverage>0 else ' '),
r[5]/12.,r[6]*100.,r[7], r[10], r[14], r[18], r[11], r[15], r[19]) )
exit()
#----------------------------------------------------------------------------------------------------------------
# one single test run
#def run(bDetails, momentums, b1970, bInflationAdjusted, movingAverage, vigilant):
#run(True,[-2],False,False,0,False)
run(True,[12],False,False,0,False)
exit()
#----------------------------------------------------------------------------------------------------------------
# a few runs, compare in graphs
dur=72
b1970=True
bInflation=False
ma=0
moms=[ [-1], [6,12], [6], [12], [3,6,9,12], [-1,6,12] ]
for m in moms:
res=run(False,m,b1970,bInflation,ma,False)
set=res[len(res)-1]
rolling_return=[]
for n in range(0,len(set)-dur-1):
rolling_return.append(100.*(math.pow(set[n+dur]/set[n],1./(dur/12))-1))
series=pandas.Series(rolling_return,
index=(monthlies1970.index[:len(rolling_return)] if b1970 else monthlies1926.index[:len(rolling_return)]))
if m==[-1]:
s="Bonds"
elif m==[-2]:
s="S&P500"
elif m==[-3]:
s="ACWX"
else:
s="Mom"+str(m)
plt.plot(series, label=s)
plt.legend()
plt.show()
interactive(True)