-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathserve.py
47 lines (30 loc) · 951 Bytes
/
serve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import mlflow
from flask import Flask, request, jsonify
MODEL_VERSION = os.getenv('MODEL_VERSION')
MODEL_URI = os.getenv('MODEL_URI')
model = mlflow.pyfunc.load_model(MODEL_URI)
def prepare_features(ride):
features = {}
features['PULocationID'] = str(ride['PULocationID'])
features['DOLocationID'] = str(ride['DOLocationID'])
features['trip_distance'] = ride['trip_distance']
return features
def predict(features):
preds = model.predict(features)
return float(preds[0])
app = Flask('duration-prediction')
@app.route('/predict', methods=['POST'])
def predict_endpoint():
ride = request.get_json()
features = prepare_features(ride)
pred = predict(features)
result = {
'preduction': {
'duration': pred,
},
'model_version': MODEL_VERSION
}
return jsonify(result)
if __name__ == "__main__":
app.run(debug=True, host='0.0.0.0', port=9696)