-
Notifications
You must be signed in to change notification settings - Fork 462
/
dataProcessor.js
341 lines (295 loc) · 8.07 KB
/
dataProcessor.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import _ from 'lodash';
import * as utils from './utils';
/**
* Downsample datapoints series
*/
function downsampleSeries(datapoints, time_to, ms_interval, func) {
var downsampledSeries = [];
var timeWindow = {
from: time_to * 1000 - ms_interval,
to: time_to * 1000
};
var points_sum = 0;
var points_num = 0;
var value_avg = 0;
var frame = [];
for (var i = datapoints.length - 1; i >= 0; i -= 1) {
if (timeWindow.from < datapoints[i][1] && datapoints[i][1] <= timeWindow.to) {
points_sum += datapoints[i][0];
points_num++;
frame.push(datapoints[i][0]);
}
else {
value_avg = points_num ? points_sum / points_num : 0;
if (func === "max") {
downsampledSeries.push([_.max(frame), timeWindow.to]);
}
else if (func === "min") {
downsampledSeries.push([_.min(frame), timeWindow.to]);
}
// avg by default
else {
downsampledSeries.push([value_avg, timeWindow.to]);
}
// Shift time window
timeWindow.to = timeWindow.from;
timeWindow.from -= ms_interval;
points_sum = 0;
points_num = 0;
frame = [];
// Process point again
i++;
}
}
return downsampledSeries.reverse();
}
/**
* Group points by given time interval
* datapoints: [[<value>, <unixtime>], ...]
*/
function groupBy(interval, groupByCallback, datapoints) {
var ms_interval = utils.parseInterval(interval);
// Calculate frame timestamps
var frames = _.groupBy(datapoints, function(point) {
// Calculate time for group of points
return Math.floor(point[1] / ms_interval) * ms_interval;
});
// frame: { '<unixtime>': [[<value>, <unixtime>], ...] }
// return [{ '<unixtime>': <value> }, { '<unixtime>': <value> }, ...]
var grouped = _.mapValues(frames, function(frame) {
var points = _.map(frame, function(point) {
return point[0];
});
return groupByCallback(points);
});
// Convert points to Grafana format
return sortByTime(_.map(grouped, function(value, timestamp) {
return [Number(value), Number(timestamp)];
}));
}
function sumSeries(timeseries) {
// Calculate new points for interpolation
var new_timestamps = _.uniq(_.map(_.flatten(timeseries, true), function(point) {
return point[1];
}));
new_timestamps = _.sortBy(new_timestamps);
var interpolated_timeseries = _.map(timeseries, function(series) {
var timestamps = _.map(series, function(point) {
return point[1];
});
var new_points = _.map(_.difference(new_timestamps, timestamps), function(timestamp) {
return [null, timestamp];
});
var new_series = series.concat(new_points);
return sortByTime(new_series);
});
_.each(interpolated_timeseries, interpolateSeries);
var new_timeseries = [];
var sum;
for (var i = new_timestamps.length - 1; i >= 0; i--) {
sum = 0;
for (var j = interpolated_timeseries.length - 1; j >= 0; j--) {
sum += interpolated_timeseries[j][i][0];
}
new_timeseries.push([sum, new_timestamps[i]]);
}
return sortByTime(new_timeseries);
}
function limit(order, n, orderByFunc, timeseries) {
let orderByCallback = aggregationFunctions[orderByFunc];
let sortByIteratee = (ts) => {
let values = _.map(ts.datapoints, (point) => {
return point[0];
});
return orderByCallback(values);
};
let sortedTimeseries = _.sortBy(timeseries, sortByIteratee);
if (order === 'bottom') {
return sortedTimeseries.slice(0, n);
} else {
return sortedTimeseries.slice(-n);
}
}
function SUM(values) {
var sum = 0;
_.each(values, function(value) {
sum += value;
});
return sum;
}
function COUNT(values) {
return values.length;
}
function AVERAGE(values) {
var sum = 0;
_.each(values, function(value) {
sum += value;
});
return sum / values.length;
}
function MIN(values) {
return _.min(values);
}
function MAX(values) {
return _.max(values);
}
function MEDIAN(values) {
var sorted = _.sortBy(values);
return sorted[Math.floor(sorted.length / 2)];
}
function setAlias(alias, timeseries) {
timeseries.target = alias;
return timeseries;
}
function setAliasByRegex(alias, timeseries) {
timeseries.target = extractText(timeseries.target, alias);
return timeseries;
}
function extractText(str, pattern) {
var extractPattern = new RegExp(pattern);
var extractedValue = extractPattern.exec(str);
extractedValue = extractedValue[0];
return extractedValue;
}
function scale(factor, datapoints) {
return _.map(datapoints, point => {
return [
point[0] * factor,
point[1]
];
});
}
function delta(datapoints) {
let newSeries = [];
let deltaValue;
for (var i = 1; i < datapoints.length; i++) {
deltaValue = datapoints[i][0] - datapoints[i - 1][0];
newSeries.push([deltaValue, datapoints[i][1]]);
}
return newSeries;
}
function groupByWrapper(interval, groupFunc, datapoints) {
var groupByCallback = aggregationFunctions[groupFunc];
return groupBy(interval, groupByCallback, datapoints);
}
function aggregateByWrapper(interval, aggregateFunc, datapoints) {
// Flatten all points in frame and then just use groupBy()
var flattenedPoints = _.flatten(datapoints, true);
var groupByCallback = aggregationFunctions[aggregateFunc];
return groupBy(interval, groupByCallback, flattenedPoints);
}
function aggregateWrapper(groupByCallback, interval, datapoints) {
var flattenedPoints = _.flatten(datapoints, true);
return groupBy(interval, groupByCallback, flattenedPoints);
}
function sortByTime(series) {
return _.sortBy(series, function(point) {
return point[1];
});
}
/**
* Interpolate series with gaps
*/
function interpolateSeries(series) {
var left, right;
// Interpolate series
for (var i = series.length - 1; i >= 0; i--) {
if (!series[i][0]) {
left = findNearestLeft(series, series[i]);
right = findNearestRight(series, series[i]);
if (!left) {
left = right;
}
if (!right) {
right = left;
}
series[i][0] = linearInterpolation(series[i][1], left, right);
}
}
return series;
}
function linearInterpolation(timestamp, left, right) {
if (left[1] === right[1]) {
return (left[0] + right[0]) / 2;
} else {
return (left[0] + (right[0] - left[0]) / (right[1] - left[1]) * (timestamp - left[1]));
}
}
function findNearestRight(series, point) {
var point_index = _.indexOf(series, point);
var nearestRight;
for (var i = point_index; i < series.length; i++) {
if (series[i][0] !== null) {
return series[i];
}
}
return nearestRight;
}
function findNearestLeft(series, point) {
var point_index = _.indexOf(series, point);
var nearestLeft;
for (var i = point_index; i > 0; i--) {
if (series[i][0] !== null) {
return series[i];
}
}
return nearestLeft;
}
function timeShift(interval, range) {
let shift = utils.parseTimeShiftInterval(interval) / 1000;
return _.map(range, time => {
return time - shift;
});
}
function unShiftTimeSeries(interval, datapoints) {
let unshift = utils.parseTimeShiftInterval(interval);
return _.map(datapoints, dp => {
return [
dp[0],
dp[1] + unshift
];
});
}
let metricFunctions = {
groupBy: groupByWrapper,
scale: scale,
delta: delta,
aggregateBy: aggregateByWrapper,
average: _.partial(aggregateWrapper, AVERAGE),
min: _.partial(aggregateWrapper, MIN),
max: _.partial(aggregateWrapper, MAX),
median: _.partial(aggregateWrapper, MEDIAN),
sum: _.partial(aggregateWrapper, SUM),
count: _.partial(aggregateWrapper, COUNT),
sumSeries: sumSeries,
top: _.partial(limit, 'top'),
bottom: _.partial(limit, 'bottom'),
timeShift: timeShift,
setAlias: setAlias,
setAliasByRegex: setAliasByRegex
};
let aggregationFunctions = {
avg: AVERAGE,
min: MIN,
max: MAX,
median: MEDIAN,
sum: SUM,
count: COUNT
};
export default {
downsampleSeries: downsampleSeries,
groupBy: groupBy,
AVERAGE: AVERAGE,
MIN: MIN,
MAX: MAX,
MEDIAN: MEDIAN,
SUM: SUM,
COUNT: COUNT,
unShiftTimeSeries: unShiftTimeSeries,
get aggregationFunctions() {
return aggregationFunctions;
},
get metricFunctions() {
return metricFunctions;
}
};