forked from homles11/IGCV3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_imagenet.py
90 lines (83 loc) · 3.42 KB
/
train_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
import argparse
import logging
logging.basicConfig(level=logging.DEBUG)
import time
from common import find_mxnet, data, fit
from common.util import download_file
import mxnet as mx
thisdir = os.path.dirname(os.path.abspath(__file__))
if __name__ == '__main__':
# parse args
parser = argparse.ArgumentParser(description="train imagenet-1k",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
fit.add_fit_args(parser)
data.add_data_args(parser)
data.add_data_aug_args(parser)
# use a large aug level
data.set_data_aug_level(parser, 2)
parser.set_defaults(
# network
network = 'igcv3',
multiplier = 1.0,
model_prefix = os.path.join(thisdir,'models/igcv3'),
# data
data_train = './imagenet_data/imagenet_train.rec',
# data_train_idx = '/home/shared/ILSVRC2012_img_train_output.idx',
data_val = './imagenet_data/imagenet_val.rec',
# data_val_idx = '/home/shared/ILSVRC2012_img_val_output.idx',
num_classes = 1000,
num_examples = 1281167,
image_shape = '3,224,224',
max_random_scale = 1.0,
min_random_scale = 0.533, # if input image has min size k, suggest to use
# 256.0/x, e.g. 0.533 for 480
# train
num_epochs = 480, # default=480 epochs
lr = 0.045, # default=0.045
lr_factor = 0.98, # default=0.98
lr_step_epochs = ','.join([str(i) for i in range(1,480)]),
wd = 0.00004,
dtype = 'float32',
batch_size = 96,
gpus = '0,1,2,3',
optimizer = 'sgd',
# monitor = 20,
load_epoch = None, # default=None
top_k = 5,
)
args = parser.parse_args()
from pprint import pprint
pprint(vars(args))
# load network
from importlib import import_module
net = import_module('symbols.'+args.network)
sym = net.get_symbol(num_classes=args.num_classes, multiplier=args.multiplier)
# print(sym.get_internals()['mobilenetv20_features_conv0_weight'].attr_dict()['mobilenetv20_features_conv0_weight']['__shape__'])
# exit()
# set up logger
logger = logging.getLogger()
fh = logging.FileHandler(os.path.join('log',time.strftime('%F-%T',time.localtime()).replace(':','-')+'.log'))
fh.setLevel(logging.DEBUG)
# ch = logging.StreamHandler()
# ch.setLevel(logging.INFO)
logger.addHandler(fh)
# logger.addHandler(ch)
# train
fit.fit(args, sym, data.get_rec_iter, logger)