-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimpleaugment.py
48 lines (36 loc) · 1.48 KB
/
simpleaugment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright 2020 Fagner Cunha
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
import tensorflow_addons as tfa
import utils
def distort_color(image, seed=None):
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = tf.image.random_brightness(image, max_delta=32. / 255., seed=seed)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5, seed=seed)
image = tf.image.random_hue(image, max_delta=0.2, seed=seed)
return tf.clip_by_value(image, 0.0, 1.0)
def random_rotation(image, deg=20, seed=None):
rotation_theta = utils.deg2rad(deg)
random_deg = tf.random.uniform(
shape=[1],
minval=-rotation_theta,
maxval=rotation_theta,
seed=seed)
image = tfa.image.rotate(image, random_deg, interpolation='BILINEAR')
return image
def distort_image_with_simpleaugment(image, seed=None):
tf.compat.v1.logging.info('Using SimpleAug.')
image = distort_color(image, seed=seed)
image = random_rotation(image, seed=seed)
return image