-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_auto_ie.py
137 lines (109 loc) · 3.81 KB
/
inference_auto_ie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import os
import pandas as pd
from inference import inference
from modules.utils import load_model_and_tokenizer
MODEL_PATHS = {
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf",
"Llama-2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
"asclepius": "starmpcc/Asclepius-7B",
"clinical-camel-7b": "augtoma/qCammel-13",
"mistral-7b": "mistralai/Mistral-7B-Instruct-v0.2",
"alpaca-7b": "chavinlo/alpaca-native",
"medalpaca-7b": "medalpaca/medalpaca-7b",
}
INFORMATION_EXTRACTION_TASKS = {
11: "medication_extraction",
15: "concept_problem_extraction",
12: "concept_test_extraction",
13: "concept_treatment_extraction",
16: "risk_factor_cad_extraction",
14: "drug_extraction",
}
EVAL_MODES = {
11: "list",
12: "list",
13: "list",
14: "list",
15: "list",
16: "list",
}
def inference_all(args):
model_path = MODEL_PATHS[args.model]
tasks_ids = list(args.tasks_idxs.keys())
module, tokenizer, model_config = load_model_and_tokenizer(
model_path, eval_type=EVAL_MODES[tasks_ids[0]]
)
kwargs_list = []
print("Loading instructions...")
df = pd.read_csv(args.instruction_csv)
for i in df.index:
row = df.loc[i]
if row.iloc[0] != args.annotator and args.annotator != "all":
continue
annotator_name = row.iloc[0]
annotator_name = annotator_name.replace(" ", "_")
for j in range(1, len(df.columns)):
if args.tasks_idxs is not None and j not in args.tasks_idxs.keys():
continue
dataset_name = args.tasks_idxs[j]
output_path = os.path.join(
args.root_dir, dataset_name, args.model, annotator_name
)
instruction = row.iloc[j]
kwargs = {
"dataset_name": dataset_name,
"eval_mode": EVAL_MODES[j],
"model_path": model_path,
"root_path": "./datasets",
"output_path": output_path,
"instruction": instruction,
"annotator": annotator_name,
"truncation_strategy": "split",
"model": module,
"tokenizer": tokenizer,
"model_config": model_config,
}
kwargs_list.append(kwargs)
print(f"Total number of inferences: {len(kwargs_list)}")
for i, kwargs in enumerate(kwargs_list):
if os.path.exists(os.path.join(kwargs["output_path"], "predict_logit.json")):
print(f"Skipping inference {i+1}/{len(kwargs_list)}; already exists!")
continue
print(f"Running inference {i+1}/{len(kwargs_list)}")
try:
inference(**kwargs)
except Exception as e:
print(f"Error in inference {i+1}/{len(kwargs_list)}")
print(kwargs["dataset_name"])
print(kwargs["model_path"])
print(e)
raise
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
default="mistral-7b",
choices=[
"Llama-2-7b-chat-hf",
"Llama-2-13b-chat",
"mistral-7b",
"asclepius",
"clinical-camel-7b",
"alpaca-7b",
"medalpaca-7b",
],
)
parser.add_argument("--annotator", type=str, required=True)
parser.add_argument("--tasks_idxs", type=dict, default=INFORMATION_EXTRACTION_TASKS)
parser.add_argument("--root_dir", type=str, default="./results/")
parser.add_argument(
"--instruction_csv", type=str, default="./instructions/instructions_from_experts.csv"
)
args = parser.parse_args()
if not os.path.exists(args.root_dir):
os.makedirs(args.root_dir, exist_ok=True)
inference_all(args)
if __name__ == "__main__":
main()