-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
254 lines (217 loc) · 9.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import time
# import warnings
# warnings.filterwarnings("ignore")
from functools import partial
import multiprocessing as mp
import numpy as np
import torch
import torch.nn as nn
# from torch.utils.tensorboard import SummaryWriter
import hydra
import wandb
from omegaconf import DictConfig, OmegaConf
from tqdm import tqdm
# from dataset_sc import load_Speech_commands
# from dataset_ljspeech import load_LJSpeech
from dataloaders import dataloader
from utils import find_max_epoch, print_size, calc_diffusion_hyperparams, local_directory
from distributed_util import init_distributed, apply_gradient_allreduce, reduce_tensor
from generate import generate
from models import construct_model
def distributed_train(rank, num_gpus, group_name, cfg):
# Initialize logger
if rank == 0 and cfg.wandb is not None:
wandb_cfg = cfg.pop("wandb")
wandb.init(
**wandb_cfg, config=OmegaConf.to_container(cfg, resolve=True)
)
# Distributed running initialization
dist_cfg = cfg.pop("distributed")
if num_gpus > 1:
init_distributed(rank, num_gpus, group_name, **dist_cfg)
train(
rank=rank, num_gpus=num_gpus,
diffusion_cfg=cfg.diffusion,
model_cfg=cfg.model,
dataset_cfg=cfg.dataset,
generate_cfg=cfg.generate,
**cfg.train,
)
def train(
rank, num_gpus,
diffusion_cfg, model_cfg, dataset_cfg, generate_cfg, # dist_cfg, wandb_cfg, # train_cfg,
ckpt_iter, n_iters, iters_per_ckpt, iters_per_logging,
learning_rate, batch_size_per_gpu,
# n_samples,
name=None,
# mel_path=None,
):
"""
Parameters:
ckpt_iter (int or 'max'): the pretrained checkpoint to be loaded;
automitically selects the maximum iteration if 'max' is selected
n_iters (int): number of iterations to train, default is 1M
iters_per_ckpt (int): number of iterations to save checkpoint,
default is 10k, for models with residual_channel=64 this number can be larger
iters_per_logging (int): number of iterations to save training log and compute validation loss, default is 100
learning_rate (float): learning rate
batch_size_per_gpu (int): batchsize per gpu, default is 2 so total batchsize is 16 with 8 gpus
n_samples (int): audio samples to generate and log per checkpoint
name (str): prefix in front of experiment name
mel_path (str): for vocoding, path to mel spectrograms (TODO generate these on the fly)
"""
local_path, checkpoint_directory = local_directory(name, model_cfg, diffusion_cfg, dataset_cfg, 'checkpoint')
# map diffusion hyperparameters to gpu
diffusion_hyperparams = calc_diffusion_hyperparams(**diffusion_cfg, fast=False) # dictionary of all diffusion hyperparameters
# load training data
trainloader = dataloader(dataset_cfg, batch_size=batch_size_per_gpu, num_gpus=num_gpus, unconditional=model_cfg.unconditional)
print('Data loaded')
# predefine model
net = construct_model(model_cfg).cuda()
print_size(net, verbose=False)
# apply gradient all reduce
if num_gpus > 1:
net = apply_gradient_allreduce(net)
# define optimizer
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
# load checkpoint
if ckpt_iter == 'max':
ckpt_iter = find_max_epoch(checkpoint_directory)
if ckpt_iter >= 0:
try:
# load checkpoint file
model_path = os.path.join(checkpoint_directory, '{}.pkl'.format(ckpt_iter))
checkpoint = torch.load(model_path, map_location='cpu')
# feed model dict and optimizer state
net.load_state_dict(checkpoint['model_state_dict'])
if 'optimizer_state_dict' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# HACK to reset learning rate
optimizer.param_groups[0]['lr'] = learning_rate
print('Successfully loaded model at iteration {}'.format(ckpt_iter))
except:
print(f"Model checkpoint found at iteration {ckpt_iter}, but was not successfully loaded - training from scratch.")
ckpt_iter = -1
else:
print('No valid checkpoint model found - training from scratch.')
ckpt_iter = -1
# training
n_iter = ckpt_iter + 1
while n_iter < n_iters + 1:
epoch_loss = 0.
for data in tqdm(trainloader, desc=f'Epoch {n_iter // len(trainloader)}'):
if model_cfg["unconditional"]:
audio, _, _ = data
# load audio
audio = audio.cuda()
mel_spectrogram = None
else:
mel_spectrogram, audio = data
mel_spectrogram = mel_spectrogram.cuda()
audio = audio.cuda()
# back-propagation
optimizer.zero_grad()
loss = training_loss(net, nn.MSELoss(), audio, diffusion_hyperparams, mel_spec=mel_spectrogram)
if num_gpus > 1:
reduced_loss = reduce_tensor(loss.data, num_gpus).item()
else:
reduced_loss = loss.item()
loss.backward()
optimizer.step()
epoch_loss += reduced_loss
# output to log
if n_iter % iters_per_logging == 0 and rank == 0:
# save training loss to tensorboard
# print("iteration: {} \treduced loss: {} \tloss: {}".format(n_iter, reduced_loss, loss.item()))
# tb.add_scalar("Log-Train-Loss", torch.log(loss).item(), n_iter)
# tb.add_scalar("Log-Train-Reduced-Loss", np.log(reduced_loss), n_iter)
wandb.log({
'train/loss': reduced_loss,
'train/log_loss': np.log(reduced_loss),
}, step=n_iter)
# save checkpoint
if n_iter % iters_per_ckpt == 0 and rank == 0:
checkpoint_name = '{}.pkl'.format(n_iter)
torch.save({'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict()},
os.path.join(checkpoint_directory, checkpoint_name))
print('model at iteration %s is saved' % n_iter)
# Generate samples
# if model_cfg["unconditional"]:
# mel_path = None
# mel_name = None
# else:
# assert mel_path is not None
# mel_name=generate_cfg.mel_name # "LJ001-0001"
if not model_cfg["unconditional"]: assert generate_cfg.mel_name is not None
generate_cfg["ckpt_iter"] = n_iter
samples = generate(
rank, # n_iter,
diffusion_cfg, model_cfg, dataset_cfg,
name=name,
**generate_cfg,
# n_samples, n_iter, name,
# mel_path=mel_path,
# mel_name=mel_name,
)
samples = [wandb.Audio(sample.squeeze().cpu(), sample_rate=dataset_cfg['sampling_rate']) for sample in samples]
wandb.log(
{'inference/audio': samples},
step=n_iter,
# commit=False,
)
n_iter += 1
if rank == 0:
epoch_loss /= len(trainloader)
wandb.log({'train/loss_epoch': epoch_loss, 'train/log_loss_epoch': np.log(epoch_loss)}, step=n_iter)
# Close logger
if rank == 0:
# tb.close()
wandb.finish()
def training_loss(net, loss_fn, audio, diffusion_hyperparams, mel_spec=None):
"""
Compute the training loss of epsilon and epsilon_theta
Parameters:
net (torch network): the wavenet model
loss_fn (torch loss function): the loss function, default is nn.MSELoss()
X (torch.tensor): training data, shape=(batchsize, 1, length of audio)
diffusion_hyperparams (dict): dictionary of diffusion hyperparameters returned by calc_diffusion_hyperparams
note, the tensors need to be cuda tensors
Returns:
training loss
"""
_dh = diffusion_hyperparams
T, Alpha_bar = _dh["T"], _dh["Alpha_bar"]
# audio = X
B, C, L = audio.shape # B is batchsize, C=1, L is audio length
diffusion_steps = torch.randint(T, size=(B,1,1)).cuda() # randomly sample diffusion steps from 1~T
z = torch.normal(0, 1, size=audio.shape).cuda()
transformed_X = torch.sqrt(Alpha_bar[diffusion_steps]) * audio + torch.sqrt(1-Alpha_bar[diffusion_steps]) * z # compute x_t from q(x_t|x_0)
epsilon_theta = net((transformed_X, diffusion_steps.view(B,1),), mel_spec=mel_spec) # predict \epsilon according to \epsilon_\theta
return loss_fn(epsilon_theta, z)
@hydra.main(version_base=None, config_path="configs/", config_name="config")
def main(cfg: DictConfig) -> None:
print(OmegaConf.to_yaml(cfg))
OmegaConf.set_struct(cfg, False) # Allow writing keys
os.makedirs("exp/", mode=0o775, exist_ok=True)
num_gpus = torch.cuda.device_count()
train_fn = partial(
distributed_train,
num_gpus=num_gpus,
group_name=time.strftime("%Y%m%d-%H%M%S"),
cfg=cfg,
)
if num_gpus <= 1:
train_fn(0)
else:
mp.set_start_method("spawn")
processes = []
for i in range(num_gpus):
p = mp.Process(target=train_fn, args=(i,))
p.start()
processes.append(p)
for p in processes:
p.join()
if __name__ == "__main__":
main()