-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgerman_credit.py
60 lines (48 loc) · 2.25 KB
/
german_credit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import argparse
import pandas as pd
import numpy as np
import jax
import optax
from distributions import HorseshoeLogisticReg, ProbitReg
from execute import run
from jax.config import config
# config.update("jax_debug_nans", True)
config.update("jax_enable_x64", True)
def main(args):
print("Loading German credit data...")
data = pd.read_table('german.data-numeric', header=None, delim_whitespace=True)
### Pre processing data as in NeuTra paper
y = -1 * (data.iloc[:, -1].values - 2)
X = data.iloc[:, :-1].apply(lambda x: -1 + (x - x.min()) * 2 / (x.max() - x.min()), axis=0).values
# X = data.iloc[:, :-1].apply(lambda x: (x - x.mean()) / x.std(), axis=0).values
X = np.concatenate([np.ones((1000, 1)), X], axis=1)
N_OBS, N_REG = X.shape
[n_warm, n_iter] = args.sampling_param
schedule = optax.exponential_decay(init_value=2.5e-3,
transition_steps=n_warm-10, decay_rate=.1, transition_begin=10)
optim = optax.adam(schedule)
N_PARAM = N_REG * 2 + 1
print("\n\nSetting up German credit logistic horseshoe model...")
dist = HorseshoeLogisticReg(X, y)
run(dist, args, optim, N_PARAM, batch_fn=jax.vmap)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=0)
parser.add_argument('-m', '--max-iter', type=int, default=1)
parser.add_argument('-b', '--batch-shape', type=int, nargs=2, default=[4, 32])
parser.add_argument('-nl', '--non-linearity', type=str, default='relu')
parser.add_argument('-f', '--flow', type=str, default='coupling')
parser.add_argument('-d', '--distance', type=str, default='kld')
parser.add_argument('-nh', '--n-hidden', type=int, default=2)
parser.add_argument('-nf', '--n-flow', type=int, default=2)
parser.add_argument('-nb', '--num-bins', type=int, default=None)
parser.add_argument(
"-s", "--sampling-param", type=int, nargs=3,
help="Sampling parameters [n_warm, n_iter]",
default=[400, 100]
)
parser.add_argument('-np', '--preconditon_iter', type=int, default=400)
parser.add_argument('-s1', '--init_step_size', type=float, default=None)
parser.add_argument('-s2', '--p_init_step_size', type=float, default=0.1)
args = parser.parse_args()
main(args)