-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflows.py
109 lines (84 loc) · 3.39 KB
/
flows.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import abc
from typing import Callable
import jax.numpy as jnp
from jax.flatten_util import ravel_pytree
import haiku as hk
import distrax as dx
def affine_coupling(params):
return dx.ScalarAffine(shift=params[0], log_scale=params[1])
def rquad_spline_coupling(params):
return dx.RationalQuadraticSpline(
params, range_min=-6., range_max=6.)
def make_dense(d, hidden_dims, norm, non_linearity, num_bins):
layers = []
for _ in range(hidden_dims):
layers.append(hk.Linear(d, w_init=hk.initializers.VarianceScaling(.01), b_init=hk.initializers.RandomNormal(.01)))
if norm:
layers.append(hk.LayerNorm(-1, True, True))
layers.append(non_linearity)
if num_bins:
layers.append(
hk.Linear(3 * num_bins + 1, w_init=hk.initializers.VarianceScaling(.01), b_init=hk.initializers.RandomNormal(.01))
)
else:
layers.extend([
hk.Linear(2 * d, w_init=hk.initializers.VarianceScaling(.01), b_init=hk.initializers.RandomNormal(.01)),
hk.Reshape((2, d), preserve_dims=-1)
])
return hk.Sequential(layers)
class Flow(metaclass=abc.ABCMeta):
@abc.abstractmethod
def flows(self):
pass
def get_utilities(self):
forward_and_log_det = hk.transform(lambda u: self.flows().forward_and_log_det(u))
inverse_and_log_det = hk.transform(lambda x: self.flows().inverse_and_log_det(x))
def flow(u, param):
u, unravel_fn = ravel_pytree(u)
x, ldj = forward_and_log_det.apply(param, None, u)
return unravel_fn(x), ldj
def flow_inv(x, param):
x, unravel_fn = ravel_pytree(x)
u, ldj = inverse_and_log_det.apply(param, None, x)
return unravel_fn(u), ldj
return forward_and_log_det.init, flow, flow_inv
class Coupling(Flow):
def __init__(self,
d: int, n_flow: int,
hidden_dims: int, non_linearity: Callable, norm: bool,
num_bins: int = None,
):
if num_bins:
self.coupling_fn = rquad_spline_coupling
else:
self.coupling_fn = affine_coupling
self.split = int(d/2 + .5)
self.d = d
self.n_flow = n_flow
self.hidden_dims = hidden_dims
self.non_linearity = non_linearity
self.norm = norm
self.num_bins = num_bins
def flows(self):
flows = []
if self.num_bins:
flows.append(shift_scale(self.d))
for _ in range(self.n_flow):
encoder = make_dense(self.split, self.hidden_dims, self.norm, self.non_linearity, self.num_bins)
flows.append(dx.SplitCoupling(self.split, 1, encoder, self.coupling_fn, swap=True))
decoder = make_dense(self.d - self.split, self.hidden_dims, self.norm, self.non_linearity, self.num_bins)
flows.append(dx.SplitCoupling(self.split, 1, decoder, self.coupling_fn, swap=False))
if self.num_bins:
flows.append(shift_scale(self.d))
return dx.Chain(flows)
class ShiftScale(Flow):
def __init__(self, d):
self.d = d
def flows(self):
return shift_scale(self.d)
def shift_scale(d):
lin = hk.Sequential([
hk.Linear(2 * d, w_init=jnp.zeros, b_init=hk.initializers.RandomNormal(.1)),
hk.Reshape((2, d), preserve_dims=-1)
])
return dx.MaskedCoupling(jnp.zeros(d).astype(bool), lin, affine_coupling)