-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_joint.py
executable file
·443 lines (374 loc) · 15.4 KB
/
model_joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The joint transfer model that bridges latent spaces of dataspace models.
The whole experiment handles transfer between latent space
of generative models that model the data. This file defines the joint model
that models the transfer between latent spaces (z1, z2) of models on dataspace.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six import iteritems
import sonnet as snt
import tensorflow as tf
import nn
ds = tf.contrib.distributions
def affine(x, output_size, z=None, residual=False, softplus=False):
"""Make an affine layer with optional residual link and softplus activation.
Args:
x: An TF tensor which is the input.
output_size: The size of output, e.g. the dimension of this affine layer.
z: An TF tensor which is added when residual link is enabled.
residual: A boolean indicating whether to enable residual link.
softplus: Whether to apply softplus activation at the end.
Returns:
The output tensor.
"""
if residual:
x = snt.Linear(2 * output_size)(x)
z = snt.Linear(output_size)(z)
dz = x[:, :output_size]
gates = tf.nn.sigmoid(x[:, output_size:])
output = (1 - gates) * z + gates * dz
else:
output = snt.Linear(output_size)(x)
if softplus:
output = tf.nn.softplus(output)
return output
class EncoderLatentFull(snt.AbstractModule):
"""An MLP (Full layers) encoder for modeling latent space."""
def __init__(self,
input_size,
output_size,
layers=(2048,) * 4,
name='EncoderLatentFull',
residual=True):
super(EncoderLatentFull, self).__init__(name=name)
self.layers = layers
self.input_size = input_size
self.output_size = output_size
self.residual = residual
def _build(self, z):
x = z
for l in self.layers:
x = tf.nn.relu(snt.Linear(l)(x))
mu = affine(x, self.output_size, z, residual=self.residual, softplus=False)
sigma = affine(
x, self.output_size, z, residual=self.residual, softplus=True)
return mu, sigma
class DecoderLatentFull(snt.AbstractModule):
"""An MLP (Full layers) decoder for modeling latent space."""
def __init__(self,
input_size,
output_size,
layers=(2048,) * 4,
name='DecoderLatentFull',
residual=True):
super(DecoderLatentFull, self).__init__(name=name)
self.layers = layers
self.input_size = input_size
self.output_size = output_size
self.residual = residual
def _build(self, z):
x = z
for l in self.layers:
x = tf.nn.relu(snt.Linear(l)(x))
mu = affine(x, self.output_size, z, residual=self.residual, softplus=False)
return mu
class VAE(snt.AbstractModule):
"""VAE for modling latant space."""
def __init__(self, config, name=''):
super(VAE, self).__init__(name=name)
self.config = config
def _build(self, unused_input=None):
# pylint:disable=unused-variable
# Reason:
# All endpoints are stored as attribute at the end of `_build`.
# Pylint cannot infer this case so it emits false alarm of
# unused-variable if we do not disable this warning.
config = self.config
# Constants
batch_size = config['batch_size']
n_latent = config['n_latent']
n_latent_shared = config['n_latent_shared']
# ---------------------------------------------------------------------
# ## Placeholders
# ---------------------------------------------------------------------
x = tf.placeholder(tf.float32, shape=(None, n_latent))
# ---------------------------------------------------------------------
# ## Modules with parameters
# ---------------------------------------------------------------------
# Variable that is class has name consider to be invalid by pylint so we
# disable the warning.
# pylint:disable=invalid-name
Encoder = config['Encoder']
Decoder = config['Decoder']
encoder = Encoder(name='encoder')
decoder = Decoder(name='decoder')
# pylint:enable=invalid-name
# ---------------------------------------------------------------------
# ## Placeholders
# ---------------------------------------------------------------------
mu, sigma = encoder(x)
mean_abs_mu, mean_abs_sigma = tf.reduce_mean(tf.abs(mu)), tf.reduce_mean(
tf.abs(sigma)) # for summary only
q_z = ds.Normal(loc=mu, scale=sigma)
q_z_sample = q_z.sample()
# Decode
x_prime = decoder(q_z_sample)
# Reconstruction Loss
# Don't use log_prob from tf.ds (larger = better)
# Instead, we use L2 norm (smaller = better)
# # recons = tf.reduce_sum(p_x.log_prob(x), axis=[-1])
recons = tf.reduce_mean(tf.square(x_prime - x))
mean_recons = tf.reduce_mean(recons)
# Prior
p_z = ds.Normal(loc=0., scale=1.)
p_z_sample = p_z.sample(sample_shape=[batch_size, n_latent_shared])
x_from_prior = decoder(p_z_sample)
# Space filling
# We use `KL` in variable name for naming consistency with math.
# pylint:disable=invalid-name
beta = config['prior_loss_beta']
if beta == 0:
prior_loss = tf.constant(0.0)
else:
if config['prior_loss'].lower() == 'KL'.lower():
KL_qp = ds.kl_divergence(ds.Normal(loc=mu, scale=sigma), p_z)
KL = tf.reduce_sum(KL_qp, axis=-1)
mean_KL = tf.reduce_mean(KL)
prior_loss = mean_KL
else:
raise NotImplementedError()
# pylint:enable=invalid-name
# VAE Loss
beta = tf.constant(config['prior_loss_beta'])
scaled_prior_loss = prior_loss * beta
vae_loss = mean_recons + scaled_prior_loss
# ---------------------------------------------------------------------
# ## Training
# ---------------------------------------------------------------------
# Learning rates
vae_lr = tf.constant(3e-4)
# Training Ops
vae_vars = list(encoder.get_variables())
vae_vars.extend(decoder.get_variables())
if vae_vars:
# Here, if we use identity transferm, there is no var to optimize,
# so in this case we shall avoid building optimizer and saver,
# otherwise there would be
# "No variables to optimize." / "No variables to save" error.
# Optimizer (we shouldn't need it)
# train_vae = tf.train.AdamOptimizer(learning_rate=vae_lr).minimize(
# vae_loss, var_list=vae_vars)
# Savers
vae_saver = tf.train.Saver(vae_vars, max_to_keep=100)
# Add all endpoints as object attributes
for k, v in iteritems(locals()):
self.__dict__[k] = v
# pylint:enable=unused-variable
class Model(snt.AbstractModule):
"""A joint model with two VAEs for latent spaces and ops for transfer.
This model containts two VAEs to model two latant spaces individually,
as well as extra Baysian Inference in training to enable transfer.
"""
def __init__(self, config, name=''):
super(Model, self).__init__(name=name)
self.config = config
def _build(self, unused_input=None):
# pylint:disable=unused-variable
# Reason:
# All endpoints are stored as attribute at the end of `_build`.
# Pylint cannot infer this case so it emits false alarm of
# unused-variable if we do not disable this warning.
# pylint:disable=invalid-name
# Reason:
# Following variables have their name consider to be invalid by pylint so
# we disable the warning.
# - Variable that is class
# - Variable that in its name has A or B indictating their belonging of
# one side of data.
# ---------------------------------------------------------------------
# ## Extract parameters from config
# ---------------------------------------------------------------------
config = self.config
# lr = config.get('lr', 3e-4)
lr = config['lr']
n_latent_shared = config['n_latent_shared']
if 'n_latent' in config:
n_latent_A = n_latent_B = config['n_latent']
else:
n_latent_A = config['vae_A']['n_latent']
n_latent_B = config['vae_B']['n_latent']
# ---------------------------------------------------------------------
# ## VAE containing Modules with parameters
# ---------------------------------------------------------------------
vae_A = VAE(config['vae_A'], name='vae_A')
vae_A()
vae_B = VAE(config['vae_B'], name='vae_B')
vae_B()
# vae_lr = tf.constant(lr)
vae_vars = vae_A.vae_vars + vae_B.vae_vars
# vae_loss = vae_A.vae_loss + vae_B.vae_loss
# train_vae = tf.train.AdamOptimizer(learning_rate=vae_lr).minimize(
# vae_loss, var_list=vae_vars)
vae_saver = tf.train.Saver(vae_vars, max_to_keep=100)
# ---------------------------------------------------------------------
# ## Computation Flow
# ---------------------------------------------------------------------
# Tensor Endpoints
x_A = vae_A.x
x_B = vae_B.x
q_z_sample_A = vae_A.q_z_sample
q_z_sample_B = vae_B.q_z_sample
mu_A, sigma_A = vae_A.mu, vae_A.sigma
mu_B, sigma_B = vae_B.mu, vae_B.sigma
x_prime_A = vae_A.x_prime
x_prime_B = vae_B.x_prime
x_from_prior_A = vae_A.x_from_prior
x_from_prior_B = vae_B.x_from_prior
x_A_to_B = vae_B.decoder(q_z_sample_A)
x_B_to_A = vae_A.decoder(q_z_sample_B)
x_A_to_B_direct = vae_B.decoder(mu_A)
x_B_to_A_direct = vae_A.decoder(mu_B)
z_hat = tf.placeholder(tf.float32, shape=(None, n_latent_shared))
x_joint_A = vae_A.decoder(z_hat)
x_joint_B = vae_B.decoder(z_hat)
vae_loss_A = vae_A.vae_loss
vae_loss_B = vae_B.vae_loss
x_align_A = tf.placeholder(tf.float32, shape=(None, n_latent_A))
x_align_B = tf.placeholder(tf.float32, shape=(None, n_latent_B))
mu_align_A, sigma_align_A = vae_A.encoder(x_align_A)
mu_align_B, sigma_align_B = vae_B.encoder(x_align_B)
q_z_align_A = ds.Normal(loc=mu_align_A, scale=sigma_align_A)
q_z_align_B = ds.Normal(loc=mu_align_B, scale=sigma_align_B)
# VI in joint space
mu_align, sigma_align = nn.product_two_guassian_pdfs(
mu_align_A, sigma_align_A, mu_align_B, sigma_align_B)
q_z_align = ds.Normal(loc=mu_align, scale=sigma_align)
p_z_align = ds.Normal(loc=0., scale=1.)
# - KL
KL_qp_align = ds.kl_divergence(q_z_align, p_z_align)
KL_align = tf.reduce_sum(KL_qp_align, axis=-1)
mean_KL_align = tf.reduce_mean(KL_align)
prior_loss_align = mean_KL_align
prior_loss_align_beta = config.get('prior_loss_align_beta', 0.0)
scaled_prior_loss_align = prior_loss_align * prior_loss_align_beta
# - Reconstruction (from joint Gussian)
q_z_sample_align = q_z_align.sample()
x_prime_A_align = vae_A.decoder(q_z_sample_align)
x_prime_B_align = vae_B.decoder(q_z_sample_align)
mean_recons_A_align = tf.reduce_mean(tf.square(x_prime_A_align - x_align_A))
mean_recons_B_align = tf.reduce_mean(tf.square(x_prime_B_align - x_align_B))
mean_recons_A_align_beta = config.get('mean_recons_A_align_beta', 0.0)
scaled_mean_recons_A_align = mean_recons_A_align * mean_recons_A_align_beta
mean_recons_B_align_beta = config.get('mean_recons_B_align_beta', 0.0)
scaled_mean_recons_B_align = mean_recons_B_align * mean_recons_B_align_beta
scaled_mean_recons_align = (
scaled_mean_recons_A_align + scaled_mean_recons_B_align)
# - Reconstruction (from transfer)
q_z_align_A_sample = q_z_align_A.sample()
q_z_align_B_sample = q_z_align_B.sample()
x_A_to_B_align = vae_B.decoder(q_z_align_A_sample)
x_B_to_A_align = vae_A.decoder(q_z_align_B_sample)
mean_recons_A_to_B_align = tf.reduce_mean(
tf.square(x_A_to_B_align - x_align_B))
mean_recons_B_to_A_align = tf.reduce_mean(
tf.square(x_B_to_A_align - x_align_A))
mean_recons_A_to_B_align_beta = config.get('mean_recons_A_to_B_align_beta',
0.0)
mean_recons_A_to_B_align_free_budget = config.get(
'mean_recons_A_to_B_align_free_budget', 0.0)
scaled_mean_recons_A_to_B_align = (tf.maximum(
mean_recons_A_to_B_align - mean_recons_A_to_B_align_free_budget, 0.0) *
mean_recons_A_to_B_align_beta)
mean_recons_B_to_A_align_beta = config.get('mean_recons_B_to_A_align_beta',
0.0)
mean_recons_B_to_A_align_free_budget = config.get(
'mean_recons_B_to_A_align_free_budget', 0.0)
scaled_mean_recons_B_to_A_align = (tf.maximum(
mean_recons_B_to_A_align - mean_recons_B_to_A_align_free_budget, 0.0) *
mean_recons_B_to_A_align_beta)
scaled_mean_recons_cross_A_B_align = (
scaled_mean_recons_A_to_B_align + scaled_mean_recons_B_to_A_align)
# Full loss
full_loss = (vae_loss_A + vae_loss_B + scaled_mean_recons_align +
scaled_mean_recons_cross_A_B_align)
# train op
full_lr = tf.constant(lr)
train_full = tf.train.AdamOptimizer(learning_rate=full_lr).minimize(
full_loss, var_list=vae_vars)
# Add all endpoints as object attributes
for k, v in iteritems(locals()):
self.__dict__[k] = v
# pylint:enable=unused-variable
# pylint:enable=invalid-name
def get_summary_kv_dict(self):
m = self
return {
'm.vae_A.mean_recons':
m.vae_A.mean_recons,
'm.vae_A.prior_loss':
m.vae_A.prior_loss,
'm.vae_A.scaled_prior_loss':
m.vae_A.scaled_prior_loss,
'm.vae_A.vae_loss':
m.vae_A.vae_loss,
'm.vae_B.mean_recons':
m.vae_B.mean_recons,
'm.vae_A.mean_abs_mu':
m.vae_A.mean_abs_mu,
'm.vae_A.mean_abs_sigma':
m.vae_A.mean_abs_sigma,
'm.vae_B.prior_loss':
m.vae_B.prior_loss,
'm.vae_B.scaled_prior_loss':
m.vae_B.scaled_prior_loss,
'm.vae_B.vae_loss':
m.vae_B.vae_loss,
'm.vae_B.mean_abs_mu':
m.vae_B.mean_abs_mu,
'm.vae_B.mean_abs_sigma':
m.vae_B.mean_abs_sigma,
'm.vae_loss_A':
m.vae_loss_A,
'm.vae_loss_B':
m.vae_loss_B,
'm.prior_loss_align':
m.prior_loss_align,
'm.scaled_prior_loss_align':
m.scaled_prior_loss_align,
'm.mean_recons_A_align':
m.mean_recons_A_align,
'm.mean_recons_B_align':
m.mean_recons_B_align,
'm.scaled_mean_recons_A_align':
m.scaled_mean_recons_A_align,
'm.scaled_mean_recons_B_align':
m.scaled_mean_recons_B_align,
'm.scaled_mean_recons_align':
m.scaled_mean_recons_align,
'm.mean_recons_A_to_B_align':
m.mean_recons_A_to_B_align,
'm.mean_recons_B_to_A_align':
m.mean_recons_B_to_A_align,
'm.scaled_mean_recons_A_to_B_align':
m.scaled_mean_recons_A_to_B_align,
'm.scaled_mean_recons_B_to_A_align':
m.scaled_mean_recons_B_to_A_align,
'm.scaled_mean_recons_cross_A_B_align':
m.scaled_mean_recons_cross_A_B_align,
'm.full_loss':
m.full_loss
}