# TF:
run_ml_docker --docker-extra-args "-p 6007:6007" tensorboard --port 6007 --logdir ~/workspace/scratch/latent_transfer/joint2_mnist_family/save
# train uses ./run_with_available_gpu while evalue use ./run_with_no_gpu
# MNIST <> MNIST, AE only
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 2 \
--layers "512,512,512,512" \
--sig_extra "_exp0_ae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 4 \
--layers "512,512,512,512" \
--sig_extra "_exp0_ae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--sig_extra "_exp0_ae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100_xsigma1" --config_B "mnist_0_nlatent100_xsigma1" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 32 \
--layers "512,512,512,512" \
--cls_layers "," \
--prior_loss_beta 0.005
--unsup_align_loss_beta 0.0 \
--cls_loss_beta 0.0 \
--sig_extra "_exp0_ae_mnist_xsigma1_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100_xsigma1" --config_B "mnist_0_nlatent100_xsigma1" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 64 \
--layers "512,512,512,512" \
--cls_layers "," \
--prior_loss_beta 0.005
--unsup_align_loss_beta 0.0 \
--cls_loss_beta 0.0 \
--sig_extra "_exp0_ae_mnist_xsigma1_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100_xsigma1" --config_B "mnist_0_nlatent100_xsigma1" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 100 \
--layers "512,512,512,512" \
--cls_layers "," \
--prior_loss_beta 0.005
--unsup_align_loss_beta 0.0 \
--cls_loss_beta 0.0 \
--sig_extra "_exp0_ae_mnist_xsigma1_run0" ;
# MNIST <> MNIST, VAE. Note that beta is highly related to shared dim...1 dim ~ 10.
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--prior_loss_beta 0.005 \
--sig_extra "_exp1_vae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--prior_loss_beta 0.01 \
--sig_extra "_exp1_vae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--prior_loss_beta 0.02 \
--sig_extra "_exp1_vae_run0" ;
# MNIST <> MNIST, VAE + Unsup align
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--prior_loss_beta 0.005 \
--unsup_align_loss_beta 1.0 \
--sig_extra "_exp2_vae+unsup_run0" ;
# ========================================================
# MNIST <> MNIST, VAE + Unsup align + cls (sup) align
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--prior_loss_beta 0.005 \
--unsup_align_loss_beta 1.0 \
--cls_loss_beta 0.05 \
--sig_extra "_exp3_vae+unsup+cls_run0" ;
# --------------------------------------------------------
# DONE
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--cls_layers "," \
--prior_loss_beta 0.005 \
--unsup_align_loss_beta 1.0 \
--cls_loss_beta 0.05 \
--sig_extra "_exp3_vae+unsup+cls_run0" ;
run_ml_docker ./run_with_no_gpu python3 ./evaluate_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--cls_layers "," \
--prior_loss_beta 0.005 \
--unsup_align_loss_beta 1.0 \
--cls_loss_beta 0.05 \
--sig_extra "_exp3_vae+unsup+cls_run0" \
--load_ckpt_iter -1 \
--interpolate_labels "0,0,1,1,7,7,8,8,3,3" \
--nb_images_between_labels 10 \
--random_seed 114514 \
;
# --------------------------------------------------------
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100_xsigma1" --config_B "mnist_0_nlatent100_xsigma1" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--cls_layers "," \
--prior_loss_beta 0.005 \
--unsup_align_loss_beta 1.0 \
--cls_loss_beta 0.05 \
--sig_extra "_exp3_vae+unsup+cls_run0" ;
# --------------------------------------------------------
# ========================================================
# MNIST <> Fashion MNIST, AE only
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--sig_extra "_exp0_ae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "512,512,512,512" \
--sig_extra "_exp0_ae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512,512,512" \
--sig_extra "_exp0_ae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "512,512,512,512,512,512" \
--sig_extra "_exp0_ae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024,1024,1024" \
--sig_extra "_exp0_ae_run0" ;
# MNIST <> Fashion MNIST, VAE.
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--prior_loss_beta 0.005 \
--sig_extra "_exp1_vae_run0" ;
# MNIST <> Fashion MNIST, VAE + Unsup align
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--prior_loss_beta 0.005 \
--unsup_align_loss_beta 1.0 \
--sig_extra "_exp2_vae+unsup_run0" ;
# MNIST <> Fashion MNIST, VAE + Unsup align + cls (sup) align
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 8 \
--layers "512,512,512,512" \
--cls_layers "8" \
--prior_loss_beta 0.005 \
--unsup_align_loss_beta 1.0 \
--cls_loss_beta 0.05 \
--sig_extra "_exp3_vae+unsup+cls_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "512,512,512,512,512,512" \
--cls_layers "8" \
--prior_loss_beta 0.0025 \
--unsup_align_loss_beta 1.0 \
--cls_loss_beta 0.05 \
--sig_extra "_exp3_vae+unsup+cls_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "512,512,512,512,512,512" \
--cls_layers "8" \
--prior_loss_beta 0.005 \
--unsup_align_loss_beta 1.0 \
--cls_loss_beta 0.05 \
--sig_extra "_exp3_vae+unsup+cls_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "512,512,512,512,512,512" \
--cls_layers "," \
--prior_loss_beta 0.0025 \
--unsup_align_loss_beta 1.0 \
--cls_loss_beta 0.05 \
--sig_extra "_exp3_vae+unsup+cls_run0" ;
run_ml_docker ./run_with_no_gpu python3 ./evaluate_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--config_A "mnist_0_nlatent100" --config_B "fashion_mnist_0_nlatent100" \
--config_classifier_A "mnist_classifier_0" --config_classifier_B "fashion_mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "512,512,512,512,512,512" \
--cls_layers "," \
--prior_loss_beta 0.0025 \
--unsup_align_loss_beta 1.0 \
--cls_loss_beta 0.05 \
--sig_extra "_exp3_vae+unsup+cls_run0" \
--load_ckpt_iter -1 \
--interpolate_labels "0,0,1,1,7,7,8,8,3,3" \
--nb_images_between_labels 10 \
;
############################################################################
# MNIST <> WAVEGAN / AE Only
############################################################################
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian_non_selective" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "512,512,512,512,512,512" \
--cls_layers "," \
--sig_extra "_exp0_mnist_wavegan_non_selective_ae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "512,512,512,512,512,512" \
--cls_layers "," \
--sig_extra "_exp0_mnist_wavegan_ae_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024" \
--cls_layers "," \
--sig_extra "_exp0_mnist_wavegan_ae_run0" ;
############################################################################
# MNIST <> WAVEGAN / VAE
############################################################################
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.0025 \
--cls_layers "," \
--sig_extra "_exp1_mnist_wavegan_vae_run0" ;
############################################################################
# MNIST <> WAVEGAN / VAE + unsup
############################################################################
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.0025 \
--unsup_align_loss_beta 1.0 \
--cls_layers "," \
--sig_extra "_exp2_mnist_wavegan_vae+unsup_run0" ;
############################################################################
# MNIST <> WAVEGAN / VAE + unsup + sup
############################################################################
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.0025 \
--unsup_align_loss_beta 1.0 \
--cls_loss_beta 0.1 \
--cls_layers "," \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.0025 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.1 \
--cls_layers "," \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.0025 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.01 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.02 \
--unsup_align_loss_beta 6.0 \
--cls_loss_beta 0.6 \
--cls_layers "," \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.01 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--n_iters 50000 \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run1_ni_50k" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.03 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--n_iters 50000 \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run1_ni_50k" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.01 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--n_iters 50000 \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0_ni_50k" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.03 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--n_iters 50000 \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0_ni_50k" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 24 \
--layers "1024,1024,1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.0075 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--n_iters 50000 \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0_ni_50k" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 32 \
--layers "1024,1024,1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.005 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--n_iters 50000 \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0_ni_50k" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 64 \
--layers "1024,1024,1024,1024,1024,1024,1024,1024" \
--prior_loss_beta 0.0025 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--n_iters 50000 \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0_ni_50k" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024,1024,1024" \
--residual=false \
--prior_loss_beta 0.01 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--n_iters 50000 \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0_ni_50k" ;
run_ml_docker ./run_with_available_gpu python3 ./train_joint2_mnist_family.py \
--default_scratch "~/workspace/scratch/latent_transfer/" \
--wavegan_gen_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan" \
--wavegan_inception_ckpt_dir "~/workspace/scratch/latent_transfer/wavegan/incept" \
--wavegan_latent_dir "~/workspace/scratch/latent_transfer/wavegan/wavegan_gaussian" \
--config_A "mnist_0_nlatent100" --config_B "wavegan" \
--config_classifier_A "mnist_classifier_0" \
--n_latent 100 --n_latent_shared 16 \
--layers "1024,1024,1024,1024,1024,1024,1024,1024" \
--residual=true \
--prior_loss_beta 0.01 \
--unsup_align_loss_beta 3.0 \
--cls_loss_beta 0.3 \
--cls_layers "," \
--n_iters 50000 \
--sig_extra "_exp3_mnist_wavegan_vae+unsup+sup_run0_ni_50k" ;