-
Notifications
You must be signed in to change notification settings - Fork 52
/
QuickHull.cpp
503 lines (446 loc) · 18.8 KB
/
QuickHull.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#include "QuickHull.hpp"
#include "MathUtils.hpp"
#include <cmath>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <limits>
#include "Structs/Mesh.hpp"
namespace quickhull {
template<>
float defaultEps() {
return 0.0001f;
}
template<>
double defaultEps() {
return 0.0000001;
}
/*
* Implementation of the algorithm
*/
template<typename T>
ConvexHull<T> QuickHull<T>::getConvexHull(const std::vector<Vector3<T>>& pointCloud, bool CCW, bool useOriginalIndices, T epsilon) {
VertexDataSource<T> vertexDataSource(pointCloud);
return getConvexHull(vertexDataSource,CCW,useOriginalIndices,epsilon);
}
template<typename T>
ConvexHull<T> QuickHull<T>::getConvexHull(const Vector3<T>* vertexData, size_t vertexCount, bool CCW, bool useOriginalIndices, T epsilon) {
VertexDataSource<T> vertexDataSource(vertexData,vertexCount);
return getConvexHull(vertexDataSource,CCW,useOriginalIndices,epsilon);
}
template<typename T>
ConvexHull<T> QuickHull<T>::getConvexHull(const T* vertexData, size_t vertexCount, bool CCW, bool useOriginalIndices, T epsilon) {
VertexDataSource<T> vertexDataSource((const vec3*)vertexData,vertexCount);
return getConvexHull(vertexDataSource,CCW,useOriginalIndices,epsilon);
}
template<typename FloatType>
HalfEdgeMesh<FloatType, size_t> QuickHull<FloatType>::getConvexHullAsMesh(const FloatType* vertexData, size_t vertexCount, bool CCW, FloatType epsilon) {
VertexDataSource<FloatType> vertexDataSource((const vec3*)vertexData,vertexCount);
buildMesh(vertexDataSource, CCW, false, epsilon);
return HalfEdgeMesh<FloatType, size_t>(m_mesh, m_vertexData);
}
template<typename T>
void QuickHull<T>::buildMesh(const VertexDataSource<T>& pointCloud, bool CCW, bool useOriginalIndices, T epsilon) {
// CCW is unused for now
(void)CCW;
// useOriginalIndices is unused for now
(void)useOriginalIndices;
if (pointCloud.size()==0) {
m_mesh = MeshBuilder<T>();
return;
}
m_vertexData = pointCloud;
// Very first: find extreme values and use them to compute the scale of the point cloud.
m_extremeValues = getExtremeValues();
m_scale = getScale(m_extremeValues);
// Epsilon we use depends on the scale
m_epsilon = epsilon*m_scale;
m_epsilonSquared = m_epsilon*m_epsilon;
// Reset diagnostics
m_diagnostics = DiagnosticsData();
m_planar = false; // The planar case happens when all the points appear to lie on a two dimensional subspace of R^3.
createConvexHalfEdgeMesh();
if (m_planar) {
const size_t extraPointIndex = m_planarPointCloudTemp.size()-1;
for (auto& he : m_mesh.m_halfEdges) {
if (he.m_endVertex == extraPointIndex) {
he.m_endVertex = 0;
}
}
m_vertexData = pointCloud;
m_planarPointCloudTemp.clear();
}
}
template<typename T>
ConvexHull<T> QuickHull<T>::getConvexHull(const VertexDataSource<T>& pointCloud, bool CCW, bool useOriginalIndices, T epsilon) {
buildMesh(pointCloud,CCW,useOriginalIndices,epsilon);
return ConvexHull<T>(m_mesh,m_vertexData, CCW, useOriginalIndices);
}
template<typename T>
void QuickHull<T>::createConvexHalfEdgeMesh() {
m_visibleFaces.clear();
m_horizonEdges.clear();
m_possiblyVisibleFaces.clear();
// Compute base tetrahedron
setupInitialTetrahedron();
assert(m_mesh.m_faces.size()==4);
// Init face stack with those faces that have points assigned to them
m_faceList.clear();
for (size_t i=0;i < 4;i++) {
auto& f = m_mesh.m_faces[i];
if (f.m_pointsOnPositiveSide && f.m_pointsOnPositiveSide->size()>0) {
m_faceList.push_back(i);
f.m_inFaceStack = 1;
}
}
// Process faces until the face list is empty.
size_t iter = 0;
while (!m_faceList.empty()) {
iter++;
if (iter == std::numeric_limits<size_t>::max()) {
// Visible face traversal marks visited faces with iteration counter (to mark that the face has been visited on this iteration) and the max value represents unvisited faces. At this point we have to reset iteration counter. This shouldn't be an
// issue on 64 bit machines.
iter = 0;
}
const size_t topFaceIndex = m_faceList.front();
m_faceList.pop_front();
auto& tf = m_mesh.m_faces[topFaceIndex];
tf.m_inFaceStack = 0;
assert(!tf.m_pointsOnPositiveSide || tf.m_pointsOnPositiveSide->size()>0);
if (!tf.m_pointsOnPositiveSide || tf.isDisabled()) {
continue;
}
// Pick the most distant point to this triangle plane as the point to which we extrude
const vec3& activePoint = m_vertexData[tf.m_mostDistantPoint];
const size_t activePointIndex = tf.m_mostDistantPoint;
// Find out the faces that have our active point on their positive side (these are the "visible faces"). The face on top of the stack of course is one of them. At the same time, we create a list of horizon edges.
m_horizonEdges.clear();
m_possiblyVisibleFaces.clear();
m_visibleFaces.clear();
m_possiblyVisibleFaces.emplace_back(topFaceIndex,std::numeric_limits<size_t>::max());
while (m_possiblyVisibleFaces.size()) {
const auto faceData = m_possiblyVisibleFaces.back();
m_possiblyVisibleFaces.pop_back();
auto& pvf = m_mesh.m_faces[faceData.m_faceIndex];
assert(!pvf.isDisabled());
if (pvf.m_visibilityCheckedOnIteration == iter) {
if (pvf.m_isVisibleFaceOnCurrentIteration) {
continue;
}
}
else {
const Plane<T>& P = pvf.m_P;
pvf.m_visibilityCheckedOnIteration = iter;
const T d = P.m_N.dotProduct(activePoint)+P.m_D;
if (d>0) {
pvf.m_isVisibleFaceOnCurrentIteration = 1;
pvf.m_horizonEdgesOnCurrentIteration = 0;
m_visibleFaces.push_back(faceData.m_faceIndex);
for (auto heIndex : m_mesh.getHalfEdgeIndicesOfFace(pvf)) {
if (m_mesh.m_halfEdges[heIndex].m_opp != faceData.m_enteredFromHalfEdge) {
m_possiblyVisibleFaces.emplace_back( m_mesh.m_halfEdges[m_mesh.m_halfEdges[heIndex].m_opp].m_face,heIndex );
}
}
continue;
}
assert(faceData.m_faceIndex != topFaceIndex);
}
// The face is not visible. Therefore, the halfedge we came from is part of the horizon edge.
pvf.m_isVisibleFaceOnCurrentIteration = 0;
m_horizonEdges.push_back(faceData.m_enteredFromHalfEdge);
// Store which half edge is the horizon edge. The other half edges of the face will not be part of the final mesh so their data slots can by recycled.
const auto halfEdges = m_mesh.getHalfEdgeIndicesOfFace(m_mesh.m_faces[m_mesh.m_halfEdges[faceData.m_enteredFromHalfEdge].m_face]);
const std::int8_t ind = (halfEdges[0]==faceData.m_enteredFromHalfEdge) ? 0 : (halfEdges[1]==faceData.m_enteredFromHalfEdge ? 1 : 2);
m_mesh.m_faces[m_mesh.m_halfEdges[faceData.m_enteredFromHalfEdge].m_face].m_horizonEdgesOnCurrentIteration |= (1<<ind);
}
const size_t horizonEdgeCount = m_horizonEdges.size();
// Order horizon edges so that they form a loop. This may fail due to numerical instability in which case we give up trying to solve horizon edge for this point and accept a minor degeneration in the convex hull.
if (!reorderHorizonEdges(m_horizonEdges)) {
m_diagnostics.m_failedHorizonEdges++;
std::cerr << "Failed to solve horizon edge." << std::endl;
auto it = std::find(tf.m_pointsOnPositiveSide->begin(),tf.m_pointsOnPositiveSide->end(),activePointIndex);
tf.m_pointsOnPositiveSide->erase(it);
if (tf.m_pointsOnPositiveSide->size()==0) {
reclaimToIndexVectorPool(tf.m_pointsOnPositiveSide);
}
continue;
}
// Except for the horizon edges, all half edges of the visible faces can be marked as disabled. Their data slots will be reused.
// The faces will be disabled as well, but we need to remember the points that were on the positive side of them - therefore
// we save pointers to them.
m_newFaceIndices.clear();
m_newHalfEdgeIndices.clear();
m_disabledFacePointVectors.clear();
size_t disableCounter = 0;
for (auto faceIndex : m_visibleFaces) {
auto& disabledFace = m_mesh.m_faces[faceIndex];
auto halfEdges = m_mesh.getHalfEdgeIndicesOfFace(disabledFace);
for (size_t j=0;j<3;j++) {
if ((disabledFace.m_horizonEdgesOnCurrentIteration & (1<<j)) == 0) {
if (disableCounter < horizonEdgeCount*2) {
// Use on this iteration
m_newHalfEdgeIndices.push_back(halfEdges[j]);
disableCounter++;
}
else {
// Mark for reusal on later iteration step
m_mesh.disableHalfEdge(halfEdges[j]);
}
}
}
// Disable the face, but retain pointer to the points that were on the positive side of it. We need to assign those points
// to the new faces we create shortly.
auto t = m_mesh.disableFace(faceIndex);
if (t) {
assert(t->size()); // Because we should not assign point vectors to faces unless needed...
m_disabledFacePointVectors.push_back(std::move(t));
}
}
if (disableCounter < horizonEdgeCount*2) {
const size_t newHalfEdgesNeeded = horizonEdgeCount*2-disableCounter;
for (size_t i=0;i<newHalfEdgesNeeded;i++) {
m_newHalfEdgeIndices.push_back(m_mesh.addHalfEdge());
}
}
// Create new faces using the edgeloop
for (size_t i = 0; i < horizonEdgeCount; i++) {
const size_t AB = m_horizonEdges[i];
auto horizonEdgeVertexIndices = m_mesh.getVertexIndicesOfHalfEdge(m_mesh.m_halfEdges[AB]);
size_t A,B,C;
A = horizonEdgeVertexIndices[0];
B = horizonEdgeVertexIndices[1];
C = activePointIndex;
const size_t newFaceIndex = m_mesh.addFace();
m_newFaceIndices.push_back(newFaceIndex);
const size_t CA = m_newHalfEdgeIndices[2*i+0];
const size_t BC = m_newHalfEdgeIndices[2*i+1];
m_mesh.m_halfEdges[AB].m_next = BC;
m_mesh.m_halfEdges[BC].m_next = CA;
m_mesh.m_halfEdges[CA].m_next = AB;
m_mesh.m_halfEdges[BC].m_face = newFaceIndex;
m_mesh.m_halfEdges[CA].m_face = newFaceIndex;
m_mesh.m_halfEdges[AB].m_face = newFaceIndex;
m_mesh.m_halfEdges[CA].m_endVertex = A;
m_mesh.m_halfEdges[BC].m_endVertex = C;
auto& newFace = m_mesh.m_faces[newFaceIndex];
const Vector3<T> planeNormal = mathutils::getTriangleNormal(m_vertexData[A],m_vertexData[B],activePoint);
newFace.m_P = Plane<T>(planeNormal,activePoint);
newFace.m_he = AB;
m_mesh.m_halfEdges[CA].m_opp = m_newHalfEdgeIndices[i>0 ? i*2-1 : 2*horizonEdgeCount-1];
m_mesh.m_halfEdges[BC].m_opp = m_newHalfEdgeIndices[((i+1)*2) % (horizonEdgeCount*2)];
}
// Assign points that were on the positive side of the disabled faces to the new faces.
for (auto& disabledPoints : m_disabledFacePointVectors) {
assert(disabledPoints);
for (const auto& point : *(disabledPoints)) {
if (point == activePointIndex) {
continue;
}
for (size_t j=0;j<horizonEdgeCount;j++) {
if (addPointToFace(m_mesh.m_faces[m_newFaceIndices[j]], point)) {
break;
}
}
}
// The points are no longer needed: we can move them to the vector pool for reuse.
reclaimToIndexVectorPool(disabledPoints);
}
// Increase face stack size if needed
for (const auto newFaceIndex : m_newFaceIndices) {
auto& newFace = m_mesh.m_faces[newFaceIndex];
if (newFace.m_pointsOnPositiveSide) {
assert(newFace.m_pointsOnPositiveSide->size()>0);
if (!newFace.m_inFaceStack) {
m_faceList.push_back(newFaceIndex);
newFace.m_inFaceStack = 1;
}
}
}
}
// Cleanup
m_indexVectorPool.clear();
}
/*
* Private helper functions
*/
template <typename T>
std::array<size_t,6> QuickHull<T>::getExtremeValues() {
std::array<size_t,6> outIndices{0,0,0,0,0,0};
T extremeVals[6] = {m_vertexData[0].x,m_vertexData[0].x,m_vertexData[0].y,m_vertexData[0].y,m_vertexData[0].z,m_vertexData[0].z};
const size_t vCount = m_vertexData.size();
for (size_t i=1;i<vCount;i++) {
const Vector3<T>& pos = m_vertexData[i];
if (pos.x>extremeVals[0]) {
extremeVals[0]=pos.x;
outIndices[0]=i;
}
else if (pos.x<extremeVals[1]) {
extremeVals[1]=pos.x;
outIndices[1]=i;
}
if (pos.y>extremeVals[2]) {
extremeVals[2]=pos.y;
outIndices[2]=i;
}
else if (pos.y<extremeVals[3]) {
extremeVals[3]=pos.y;
outIndices[3]=i;
}
if (pos.z>extremeVals[4]) {
extremeVals[4]=pos.z;
outIndices[4]=i;
}
else if (pos.z<extremeVals[5]) {
extremeVals[5]=pos.z;
outIndices[5]=i;
}
}
return outIndices;
}
template<typename T>
bool QuickHull<T>::reorderHorizonEdges(std::vector<size_t>& horizonEdges) {
const size_t horizonEdgeCount = horizonEdges.size();
for (size_t i=0;i<horizonEdgeCount-1;i++) {
const size_t endVertex = m_mesh.m_halfEdges[ horizonEdges[i] ].m_endVertex;
bool foundNext = false;
for (size_t j=i+1;j<horizonEdgeCount;j++) {
const size_t beginVertex = m_mesh.m_halfEdges[ m_mesh.m_halfEdges[horizonEdges[j]].m_opp ].m_endVertex;
if (beginVertex == endVertex) {
std::swap(horizonEdges[i+1],horizonEdges[j]);
foundNext = true;
break;
}
}
if (!foundNext) {
return false;
}
}
assert(m_mesh.m_halfEdges[ horizonEdges[horizonEdges.size()-1] ].m_endVertex == m_mesh.m_halfEdges[ m_mesh.m_halfEdges[horizonEdges[0]].m_opp ].m_endVertex);
return true;
}
template <typename T>
T QuickHull<T>::getScale(const std::array<size_t,6>& extremeValues) {
T s = 0;
for (size_t i=0;i<6;i++) {
const T* v = (const T*)(&m_vertexData[extremeValues[i]]);
v += i/2;
auto a = std::abs(*v);
if (a>s) {
s = a;
}
}
return s;
}
template<typename T>
void QuickHull<T>::setupInitialTetrahedron() {
const size_t vertexCount = m_vertexData.size();
// If we have at most 4 points, just return a degenerate tetrahedron:
if (vertexCount <= 4) {
size_t v[4] = {0,std::min((size_t)1,vertexCount-1),std::min((size_t)2,vertexCount-1),std::min((size_t)3,vertexCount-1)};
const Vector3<T> N = mathutils::getTriangleNormal(m_vertexData[v[0]],m_vertexData[v[1]],m_vertexData[v[2]]);
const Plane<T> trianglePlane(N,m_vertexData[v[0]]);
if (trianglePlane.isPointOnPositiveSide(m_vertexData[v[3]])) {
std::swap(v[0],v[1]);
}
return m_mesh.setup(v[0],v[1],v[2],v[3]);
}
// Find two most distant extreme points.
T maxD = m_epsilonSquared;
std::pair<size_t,size_t> selectedPoints;
for (size_t i=0;i<6;i++) {
for (size_t j=i+1;j<6;j++) {
const T d = m_vertexData[ m_extremeValues[i] ].getSquaredDistanceTo( m_vertexData[ m_extremeValues[j] ] );
if (d > maxD) {
maxD=d;
selectedPoints={m_extremeValues[i],m_extremeValues[j]};
}
}
}
if (maxD == m_epsilonSquared) {
// A degenerate case: the point cloud seems to consists of a single point
return m_mesh.setup(0,std::min((size_t)1,vertexCount-1),std::min((size_t)2,vertexCount-1),std::min((size_t)3,vertexCount-1));
}
assert(selectedPoints.first != selectedPoints.second);
// Find the most distant point to the line between the two chosen extreme points.
const Ray<T> r(m_vertexData[selectedPoints.first], (m_vertexData[selectedPoints.second] - m_vertexData[selectedPoints.first]));
maxD = m_epsilonSquared;
size_t maxI=std::numeric_limits<size_t>::max();
const size_t vCount = m_vertexData.size();
for (size_t i=0;i<vCount;i++) {
const T distToRay = mathutils::getSquaredDistanceBetweenPointAndRay(m_vertexData[i],r);
if (distToRay > maxD) {
maxD=distToRay;
maxI=i;
}
}
if (maxD == m_epsilonSquared) {
// It appears that the point cloud belongs to a 1 dimensional subspace of R^3: convex hull has no volume => return a thin triangle
// Pick any point other than selectedPoints.first and selectedPoints.second as the third point of the triangle
auto it = std::find_if(m_vertexData.begin(),m_vertexData.end(),[&](const vec3& ve) {
return ve != m_vertexData[selectedPoints.first] && ve != m_vertexData[selectedPoints.second];
});
const size_t thirdPoint = (it == m_vertexData.end()) ? selectedPoints.first : std::distance(m_vertexData.begin(),it);
it = std::find_if(m_vertexData.begin(),m_vertexData.end(),[&](const vec3& ve) {
return ve != m_vertexData[selectedPoints.first] && ve != m_vertexData[selectedPoints.second] && ve != m_vertexData[thirdPoint];
});
const size_t fourthPoint = (it == m_vertexData.end()) ? selectedPoints.first : std::distance(m_vertexData.begin(),it);
return m_mesh.setup(selectedPoints.first,selectedPoints.second,thirdPoint,fourthPoint);
}
// These three points form the base triangle for our tetrahedron.
assert(selectedPoints.first != maxI && selectedPoints.second != maxI);
std::array<size_t,3> baseTriangle{selectedPoints.first, selectedPoints.second, maxI};
const Vector3<T> baseTriangleVertices[]={ m_vertexData[baseTriangle[0]], m_vertexData[baseTriangle[1]], m_vertexData[baseTriangle[2]] };
// Next step is to find the 4th vertex of the tetrahedron. We naturally choose the point farthest away from the triangle plane.
maxD=m_epsilon;
maxI=0;
const Vector3<T> N = mathutils::getTriangleNormal(baseTriangleVertices[0],baseTriangleVertices[1],baseTriangleVertices[2]);
Plane<T> trianglePlane(N,baseTriangleVertices[0]);
for (size_t i=0;i<vCount;i++) {
const T d = std::abs(mathutils::getSignedDistanceToPlane(m_vertexData[i],trianglePlane));
if (d>maxD) {
maxD=d;
maxI=i;
}
}
if (maxD == m_epsilon) {
// All the points seem to lie on a 2D subspace of R^3. How to handle this? Well, let's add one extra point to the point cloud so that the convex hull will have volume.
m_planar = true;
const vec3 N1 = mathutils::getTriangleNormal(baseTriangleVertices[1],baseTriangleVertices[2],baseTriangleVertices[0]);
m_planarPointCloudTemp.clear();
m_planarPointCloudTemp.insert(m_planarPointCloudTemp.begin(),m_vertexData.begin(),m_vertexData.end());
const vec3 extraPoint = N1 + m_vertexData[0];
m_planarPointCloudTemp.push_back(extraPoint);
maxI = m_planarPointCloudTemp.size()-1;
m_vertexData = VertexDataSource<T>(m_planarPointCloudTemp);
}
// Enforce CCW orientation (if user prefers clockwise orientation, swap two vertices in each triangle when final mesh is created)
const Plane<T> triPlane(N,baseTriangleVertices[0]);
if (triPlane.isPointOnPositiveSide(m_vertexData[maxI])) {
std::swap(baseTriangle[0],baseTriangle[1]);
}
// Create a tetrahedron half edge mesh and compute planes defined by each triangle
m_mesh.setup(baseTriangle[0],baseTriangle[1],baseTriangle[2],maxI);
for (auto& f : m_mesh.m_faces) {
auto v = m_mesh.getVertexIndicesOfFace(f);
const Vector3<T>& va = m_vertexData[v[0]];
const Vector3<T>& vb = m_vertexData[v[1]];
const Vector3<T>& vc = m_vertexData[v[2]];
const Vector3<T> N1 = mathutils::getTriangleNormal(va, vb, vc);
const Plane<T> plane(N1,va);
f.m_P = plane;
}
// Finally we assign a face for each vertex outside the tetrahedron (vertices inside the tetrahedron have no role anymore)
for (size_t i=0;i<vCount;i++) {
for (auto& face : m_mesh.m_faces) {
if (addPointToFace(face, i)) {
break;
}
}
}
}
/*
* Explicit template specifications for float and double
*/
template class QuickHull<float>;
template class QuickHull<double>;
}