-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlsm1.py
158 lines (146 loc) · 5.17 KB
/
lsm1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import sys
import numpy as np
import scipy.sparse as sparse
import time
import pickle
from pprint import pprint
#Sigmoid Function
def sigmoid(x):
return 1 / (1 + np.exp(-x))
#a relu activation function
def relu(x):
return np.maximum(0,x)
#derivative of a relu activation function
def relu_derivative(x):
return np.where(x <= 0, 0, 1)
class Brain:
def __init__(self, input_size, depth):
print(f'Brain({input_size}, {depth})')
neuron_size = input_size * depth
self.input_size = input_size
self.depth = depth
self.neurons = sparse.lil_array((neuron_size,1),dtype='float32')
self.weights = sparse.lil_matrix((neuron_size,neuron_size),dtype='float32')
self.biases = sparse.lil_array((neuron_size,1),dtype='float32')
self.IDs = set()
self.activation = relu
def tick(self):
print('tick()')
start = time.perf_counter()
neurons = self.weights @ self.neurons + self.biases
self.neurons = sparse.lil_array(self.activation(neurons.todense()))
end = time.perf_counter()
print(end-start)
def input_image(self, image):
assert self.input_size == np.prod(image.shape)
print('input_image({})'.format('x'.join([str(x) for x in image.shape])))
start = time.perf_counter()
for i,v in enumerate(image.flatten()):
ID = i*self.depth+v
if ID not in self.IDs:
self.add_new_neuron(ID)
self.neurons[ID] = 1.0
end = time.perf_counter()
print("got {} neurons".format(len(self.IDs)))
print(end-start)
def generate_random_connections(self):
print('generate_random_connections()')
start = time.perf_counter()
neuron_size = self.input_size * self.depth
used_neurons = len(self.IDs)
data = np.random.random(size=(used_neurons**2)).astype(np.float32)
row = []
col = []
for C in self.IDs:
self.biases[C] = np.random.random()
for R in self.IDs:
row.append(R)
col.append(C)
self.weights = sparse.csc_matrix((data, (row,col)), shape=(neuron_size,neuron_size))
self.weights.prune()
self.neurons = self.neurons.tocsc()
self.neurons.prune()
self.biases = self.biases.tocsc()
self.biases.prune()
end = time.perf_counter()
print(end-start)
pprint(self.neurons)
pprint(self.weights)
def add_new_neuron(self, ID):
# for X in self.IDs:
# self.weights[X,ID] = np.random.random()
# self.weights[ID,X] = np.random.random()
self.IDs.add(ID)
def create_layer(self, layer_size):
print('create_layer({})'.format(layer_size))
start = time.perf_counter()
for i in range(layer_size):
ID = self.input_size * self.depth + i
self.add_new_neuron(ID)
end = time.perf_counter()
print(end-start)
def create_network(self, network_size):
print('create_network({})'.format(network_size))
start = time.perf_counter()
self.create_layer(network_size[0])
for i, layer_size in enumerate(network_size[1:]):
self.create_layer(layer_size)
#self.create_layer(layer_size)
#self.create_layer(layer_size)
end = time.perf_counter()
print(end-start)
def visualize(self):
print('visualize()')
start = time.perf_counter()
neuron_size = self.input_size * self.depth
data = np.zeros(neuron_size**2).astype(np.float32)
row = []
col = []
for C in self.IDs:
for R in self.IDs:
row.append(R)
col.append(C)
data[R*neuron_size+C] = self.weights[R,C]
self.weights = sparse.csc_matrix((data, (row,col)), shape=(neuron_size,neuron_size))
self.weights.prune()
self.neurons = self.neurons.tocsc()
self.neurons.prune()
self.biases = self.biases.tocsc()
self.biases.prune()
end = time.perf_counter()
print(end-start)
pprint(self.neurons)
pprint(self.weights)
if __name__ == "__main__":
#Train the model on CIFAR dataset with 3 connected layers
num_images = int(sys.argv[1]) if len(sys.argv) > 1 else 1
print(f"will process {num_images} images")
with open('cifar/data_batch_1', 'rb') as f:
data = pickle.load(f, encoding='bytes')
images = data[b'data']
labels = data[b'labels']
nn = Brain(np.prod(images.shape[1:]), 3)
cifar_images = []
cifar_labels = []
for i in range(num_images):
image = images[i]
label = labels[i]
cifar_images.append(image)
cifar_labels.append(label)
#nn.input_image(image)
nn.create_network([100,100,100])
#nn.visualize()
for image in cifar_images:
nn.input_image(image)
print(nn.neurons)
print(nn.weights)
for i in range(100):
nn.tick()
print(np.sum(nn.neurons.todense()))
nn.visualize()
nn.generate_random_connections()
nn.visualize()
for i in range(100):
nn.tick()
print(np.sum(nn.neurons.todense()))
nn.visualize()