-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnb_author_id.py
43 lines (26 loc) · 911 Bytes
/
nb_author_id.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#!/usr/bin/python
"""
Use a Naive Bayes Classifier to identify emails by their authors
authors and labels:
Sara has label 0
Chris has label 1
"""
import sys
from time import time
sys.path.append("../tools/")
from email_preprocess import preprocess
### features_train and features_test are the features for the training
### and testing datasets, respectively
### labels_train and labels_test are the corresponding item labels
features_train, features_test, labels_train, labels_test = preprocess()
from sklearn.naive_bayes import GaussianNB
clf=GaussianNB()
t0 = time()
clf.fit(features_train,labels_train)
print ("training time:", round(time()-t0, 3), "s")
t0 = time()
pred = clf.predict(features_test)
print ("testing time:", round(time()-t0, 3), "s")
from sklearn.metrics import accuracy_score
accuracy=accuracy_score(labels_test,pred)
print("accuracy is ",accuracy)