forked from shinh/sold
-
Notifications
You must be signed in to change notification settings - Fork 3
/
sold.cc
1058 lines (932 loc) · 40.6 KB
/
sold.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (C) 2021 The sold authors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "sold.h"
#include <algorithm>
#include <list>
#include <queue>
#include <set>
Sold::Sold(const std::string& elf_filename, const std::vector<std::string>& exclude_sos, const std::vector<std::string>& exclude_dirs,
const std::vector<std::string>& exclude_finis, const std::vector<std::string> custome_library_path,
const std::vector<std::string>& exclude_runpath_pattern, bool emit_section_header, bool delete_unused_DT_STRTAB)
: exclude_sos_(exclude_sos),
exclude_dirs_(exclude_dirs),
exclude_finis_(exclude_finis),
custome_library_path_(custome_library_path),
exclude_runpath_pattern_(exclude_runpath_pattern),
emit_section_header_(emit_section_header),
delete_unused_DT_STRTAB_(delete_unused_DT_STRTAB) {
main_binary_ = ReadELF(elf_filename);
is_executable_ = main_binary_->FindPhdr(PT_INTERP);
machine_type = main_binary_->ehdr()->e_machine;
memprotect_builder_.SetMachineType(machine_type);
// Register (filename, soname) of main_binary_
if (main_binary_->name() != "" && main_binary_->soname() != "") {
filename_to_soname_[main_binary_->name()] = main_binary_->soname();
soname_to_filename_[main_binary_->soname()] = main_binary_->name();
LOG(INFO) << SOLD_LOG_KEY(main_binary_->name()) << SOLD_LOG_KEY(main_binary_->soname());
} else {
// soname of main_binary_ can be empty when main_binary_ is executable file.
LOG(WARNING) << "Empty filename or soname: " << SOLD_LOG_KEY(main_binary_->name()) << SOLD_LOG_KEY(main_binary_->soname());
}
InitLdLibraryPaths();
ResolveLibraryPaths(main_binary_.get());
version_.SetSonameToFilename(soname_to_filename_);
}
void Sold::Link(const std::string& out_filename) {
DecideMemOffset();
CollectTLS();
CollectArrays();
CollectSymbols();
CopyPublicSymbols();
Relocate();
syms_.Build(strtab_, version_);
syms_.MergePublicSymbols(strtab_, version_);
// BuildEhdr();
if (is_executable_) {
BuildInterp();
}
BuildArrays();
BuildDynamic();
BuildMprotect();
strtab_.Freeze();
BuildLoads();
BuildEHFrameHeader();
shdr_.RegisterShdr(GnuHashOffset(), GnuHashSize(), ShdrBuilder::ShdrType::GnuHash);
shdr_.RegisterShdr(SymtabOffset(), SymtabSize(), ShdrBuilder::ShdrType::Dynsym, sizeof(Elf_Sym));
if (version_.NumVerneed() > 0) {
shdr_.RegisterShdr(VersymOffset(), VersymSize(), ShdrBuilder::ShdrType::GnuVersion, sizeof(Elf_Versym));
shdr_.RegisterShdr(VerneedOffset(), VerneedSize(), ShdrBuilder::ShdrType::GnuVersionR, 0, version_.NumVerneed());
}
shdr_.RegisterShdr(RelOffset(), RelSize(), ShdrBuilder::ShdrType::RelaDyn, sizeof(Elf_Rel));
shdr_.RegisterShdr(InitArrayOffset(), InitArraySize(), ShdrBuilder::ShdrType::InitArray);
shdr_.RegisterShdr(FiniArrayOffset(), FiniArraySize(), ShdrBuilder::ShdrType::FiniArray);
shdr_.RegisterShdr(StrtabOffset(), StrtabSize(), ShdrBuilder::ShdrType::Dynstr);
shdr_.RegisterShdr(DynamicOffset(), DynamicSize(), ShdrBuilder::ShdrType::Dynamic, sizeof(Elf_Dyn));
shdr_.RegisterShdr(ShstrtabOffset(), ShstrtabSize(), ShdrBuilder::ShdrType::Shstrtab);
// TODO(akawashiro) .text and .tls
shdr_.Freeze();
// We must call BuildEhdr at the last because of e_shoff
BuildEhdr();
Emit(out_filename);
CHECK(chmod(out_filename.c_str(), 0755) == 0);
}
void Sold::Emit(const std::string& out_filename) {
FILE* fp = fopen(out_filename.c_str(), "wb");
CHECK(fp);
Write(fp, ehdr_);
EmitPhdrs(fp);
EmitArrays(fp);
EmitGnuHash(fp);
EmitSymtab(fp);
EmitVersym(fp);
EmitVerneed(fp);
EmitRel(fp);
EmitStrtab(fp);
EmitDynamic(fp);
EmitShstrtab(fp);
EmitAlign(fp);
EmitCode(fp);
EmitTLS(fp);
EmitEHFrame(fp);
EmitMemprotect(fp);
if (emit_section_header_) EmitShdr(fp);
fclose(fp);
}
// You must call this function after building all stuffs
// because ShdrOffset() cannot be fixed before it.
void Sold::BuildEhdr() {
ehdr_ = *main_binary_->ehdr();
ehdr_.e_entry += offsets_[main_binary_.get()];
ehdr_.e_shoff = ShdrOffset();
ehdr_.e_shnum = shdr_.CountShdrs();
ehdr_.e_shstrndx = shdr_.Shstrndx();
ehdr_.e_phnum = CountPhdrs();
}
void Sold::BuildLoads() {
uintptr_t file_offset = CodeOffset();
CHECK(file_offset < offsets_[main_binary_.get()]);
for (ELFBinary* bin : link_binaries_) {
uintptr_t offset = offsets_[bin];
for (Elf_Phdr* phdr : bin->loads()) {
Load load;
load.bin = bin;
load.orig = phdr;
load.emit = *phdr;
file_offset += phdr->p_vaddr & 0xfff;
load.emit.p_offset = file_offset;
file_offset = AlignNext(file_offset + phdr->p_filesz);
load.emit.p_vaddr += offset;
load.emit.p_paddr += offset;
// TODO(hamaji): Add PF_W only for GOT.
load.emit.p_flags |= PF_W;
// TODO(hamaji): Check if this is really safe.
if (load.emit.p_align > 0x1000) {
load.emit.p_align = 0x1000;
}
loads_.push_back(load);
}
}
tls_file_offset_ = file_offset;
file_offset = AlignNext(file_offset + TLSFileSize());
ehframe_file_offset_ = file_offset;
file_offset = AlignNext(file_offset + EHFrameSize());
mprotect_file_offset_ = file_offset;
for (const Load& load : loads_) {
LOG(INFO) << "PT_LOAD mapping: name=" << load.bin->name() << " vaddr=" << load.emit.p_vaddr << " memsz=" << load.emit.p_memsz
<< " offset=" << load.emit.p_offset << " filesz=" << load.emit.p_filesz << " orig_vaddr=" << load.orig->p_vaddr
<< " orig_offset=" << load.orig->p_offset;
}
}
void Sold::BuildArrays() {
std::vector<uintptr_t> array = init_array_;
std::copy(fini_array_.begin(), fini_array_.end(), std::back_inserter(array));
// We must emit a relocation because the first element of init_array_ is
// mprotect_offset_.
CHECK_GE(init_array_.size(), 1);
Elf_Rel mprotect_rel;
if (machine_type == EM_X86_64) {
mprotect_rel.r_info = ELF_R_INFO(0, R_X86_64_RELATIVE);
} else if (machine_type == EM_AARCH64) {
mprotect_rel.r_info = ELF_R_INFO(0, R_AARCH64_RELATIVE);
} else {
CHECK(false);
}
mprotect_rel.r_offset = InitArrayOffset();
mprotect_rel.r_addend = array[0];
rels_.emplace_back(mprotect_rel);
}
std::string Sold::BuildRunpath() {
std::string runpath;
for (const ELFBinary* b : link_binaries_) {
std::vector<std::string> runpaths = SplitString(b->runpath(), ":");
for (const auto rp : runpaths) {
bool matched = false;
for (const auto pattern : exclude_runpath_pattern_) {
if (rp.find(pattern) != std::string::npos) matched = true;
}
if (!matched) {
runpath += rp + ":";
}
}
}
return runpath;
}
void Sold::BuildDynamic() {
std::set<ELFBinary*> linked(link_binaries_.begin(), link_binaries_.end());
std::set<std::string> neededs;
for (const auto& p : libraries_) {
ELFBinary* bin = p.second.get();
if (!linked.count(bin)) {
neededs.insert(bin->name());
}
}
for (const std::string& needed : neededs) {
MakeDyn(DT_NEEDED, AddStr(needed));
}
if (!main_binary_->soname().empty()) {
MakeDyn(DT_SONAME, AddStr(main_binary_->soname()));
}
if (!main_binary_->rpath().empty()) {
MakeDyn(DT_RPATH, AddStr(main_binary_->rpath()));
}
if (!main_binary_->runpath().empty()) {
MakeDyn(DT_RUNPATH, AddStr(BuildRunpath()));
}
if (uintptr_t ptr = main_binary_->init()) {
MakeDyn(DT_INIT, ptr + offsets_[main_binary_.get()]);
}
if (uintptr_t ptr = main_binary_->fini()) {
MakeDyn(DT_FINI, ptr + offsets_[main_binary_.get()]);
}
MakeDyn(DT_INIT_ARRAY, InitArrayOffset());
MakeDyn(DT_INIT_ARRAYSZ, init_array_.size() * sizeof(uintptr_t));
MakeDyn(DT_FINI_ARRAY, FiniArrayOffset());
MakeDyn(DT_FINI_ARRAYSZ, fini_array_.size() * sizeof(uintptr_t));
MakeDyn(DT_GNU_HASH, GnuHashOffset());
MakeDyn(DT_STRTAB, StrtabOffset());
MakeDyn(DT_STRSZ, strtab_.size());
MakeDyn(DT_SYMTAB, SymtabOffset());
MakeDyn(DT_SYMENT, sizeof(Elf_Sym));
if (version_.NumVerneed() > 0) {
MakeDyn(DT_VERSYM, VersymOffset());
MakeDyn(DT_VERNEEDNUM, version_.NumVerneed());
MakeDyn(DT_VERNEED, VerneedOffset());
}
MakeDyn(DT_RELA, RelOffset());
MakeDyn(DT_RELAENT, sizeof(Elf_Rel));
MakeDyn(DT_RELASZ, rels_.size() * sizeof(Elf_Rel));
MakeDyn(DT_NULL, 0);
}
void Sold::EmitPhdrs(FILE* fp) {
std::vector<Elf_Phdr> phdrs;
CHECK(main_binary_->phdrs().size() > 2);
if (is_executable_) {
phdrs.push_back(main_binary_->GetPhdr(PT_PHDR));
phdrs.push_back(main_binary_->GetPhdr(PT_INTERP));
phdrs[1].p_offset = phdrs[1].p_vaddr = phdrs[1].p_paddr = StrtabOffset() + interp_offset_;
}
size_t dyn_start = DynamicOffset();
size_t dyn_size = sizeof(Elf_Dyn) * dynamic_.size();
size_t seg_start = AlignNext(dyn_start + dyn_size);
{
Elf_Phdr phdr = main_binary_->GetPhdr(PT_LOAD);
phdr.p_offset = 0;
phdr.p_flags = PF_R | PF_W;
phdr.p_vaddr = 0;
phdr.p_paddr = 0;
phdr.p_filesz = seg_start;
phdr.p_memsz = seg_start;
phdrs.push_back(phdr);
}
{
Elf_Phdr phdr = main_binary_->GetPhdr(PT_DYNAMIC);
phdr.p_offset = dyn_start;
phdr.p_flags = PF_R | PF_W;
phdr.p_vaddr = dyn_start;
phdr.p_paddr = dyn_start;
phdr.p_filesz = dyn_size;
phdr.p_memsz = dyn_size;
phdrs.push_back(phdr);
}
for (const Load& load : loads_) {
phdrs.push_back(load.emit);
}
if (tls_.memsz) {
Elf_Phdr phdr;
phdr.p_offset = tls_file_offset_;
phdr.p_vaddr = tls_offset_;
phdr.p_paddr = tls_offset_;
phdr.p_filesz = tls_.filesz;
phdr.p_memsz = tls_.memsz;
phdr.p_align = 0x1000;
phdr.p_type = PT_TLS;
phdr.p_flags = PF_R;
phdrs.push_back(phdr);
phdr.p_type = PT_LOAD;
phdr.p_flags = PF_R | PF_W;
phdrs.push_back(phdr);
}
{
Elf_Phdr phdr;
phdr.p_offset = ehframe_file_offset_;
phdr.p_vaddr = ehframe_offset_;
phdr.p_paddr = ehframe_offset_;
phdr.p_filesz = ehframe_builder_.Size();
phdr.p_memsz = ehframe_builder_.Size();
phdr.p_align = 0x1000;
phdr.p_type = PT_GNU_EH_FRAME;
phdr.p_flags = PF_R;
phdrs.push_back(phdr);
phdr.p_type = PT_LOAD;
phdr.p_flags = PF_R | PF_W;
phdrs.push_back(phdr);
}
{
Elf_Phdr phdr;
phdr.p_offset = mprotect_file_offset_;
phdr.p_vaddr = mprotect_offset_;
phdr.p_paddr = mprotect_offset_;
phdr.p_filesz = MprotectSize();
phdr.p_memsz = MprotectSize();
phdr.p_align = 0x1000;
phdr.p_type = PT_LOAD;
phdr.p_flags = PF_R | PF_X;
phdrs.push_back(phdr);
}
{
Elf_Phdr phdr;
phdr.p_offset = 0;
phdr.p_vaddr = 0;
phdr.p_paddr = 0;
phdr.p_filesz = 0;
phdr.p_memsz = 0;
phdr.p_align = 0x10; // TODO(akawashiro) Is it appropriate?
phdr.p_type = PT_GNU_STACK;
phdr.p_flags = PF_R | PF_W;
for (ELFBinary* bin : link_binaries_) {
if (bin->gnu_stack() != NULL) {
phdr.p_flags |= bin->gnu_stack()->p_flags;
}
}
phdrs.push_back(phdr);
}
CHECK(phdrs.size() == CountPhdrs());
for (const Elf_Phdr& phdr : phdrs) {
Write(fp, phdr);
}
}
void Sold::EmitGnuHash(FILE* fp) {
CHECK(ftell(fp) == GnuHashOffset());
const Elf_GnuHash& gnu_hash = syms_.gnu_hash();
const std::vector<Syminfo>& exposed_syms = syms_.GetExposedSyms();
Write(fp, gnu_hash.nbuckets);
Write(fp, gnu_hash.symndx);
Write(fp, gnu_hash.maskwords);
Write(fp, gnu_hash.shift2);
Elf_Addr bloom_filter = -1;
Write(fp, bloom_filter);
// If there is no symbols in gnu_hash_, bucket must be 0.
uint32_t bucket = (exposed_syms.size() > gnu_hash.symndx) ? gnu_hash.symndx : 0;
Write(fp, bucket);
for (size_t i = gnu_hash.symndx; i < exposed_syms.size(); ++i) {
uint32_t h = CalcGnuHash(exposed_syms[i].name) & ~1;
if (i == exposed_syms.size() - 1) {
h |= 1;
}
Write(fp, h);
}
}
uintptr_t Sold::TLSMemSize() const {
static uintptr_t s = 0;
if (s != 0) return s;
for (ELFBinary* bin : link_binaries_) {
for (Elf_Phdr* phdr : bin->phdrs()) {
if (phdr->p_type == PT_TLS) {
s += phdr->p_memsz;
}
}
}
return s;
}
// Decide locations for each linked shared objects
// TODO(akawashiro) Is the initial value of offset optimal?
void Sold::DecideMemOffset() {
uintptr_t offset = 0x10000000;
for (ELFBinary* bin : link_binaries_) {
const Range range = bin->GetRange() + offset;
CHECK(range.start == offset) << "sold cannot handle other than shared objects.";
offsets_.emplace(bin, range.start);
LOG(INFO) << "Assigned: " << bin->soname() << " " << HexString(range.start, 8) << "-" << HexString(range.end, 8);
offset = range.end;
}
tls_offset_ = offset;
offset = AlignNext(offset + TLSMemSize());
ehframe_offset_ = offset;
offset = AlignNext(offset + EHFrameSize());
mprotect_offset_ = offset;
offset = AlignNext(offset + MprotectSize());
}
void Sold::CollectTLS() {
uintptr_t bss_offset = 0;
for (ELFBinary* bin : link_binaries_) {
for (Elf_Phdr* phdr : bin->phdrs()) {
if (phdr->p_type == PT_TLS) {
uint8_t* start = reinterpret_cast<uint8_t*>(bin->GetPtr(phdr->p_vaddr));
size_t size = phdr->p_filesz;
uintptr_t file_offset = tls_.filesz;
CHECK(tls_.bin_to_index.emplace(bin, tls_.data.size()).second);
tls_.data.push_back({bin, start, size, file_offset, bss_offset});
tls_.memsz += phdr->p_memsz;
tls_.filesz += size;
bss_offset += phdr->p_memsz - size;
}
}
}
SOLD_CHECK_EQ(tls_.memsz, TLSMemSize());
for (TLS::Data& d : tls_.data) {
d.bss_offset += tls_.filesz;
LOG(INFO) << "TLS of " << d.bin->name() << ": file=" << HexString(d.file_offset) << " + " << HexString(d.size)
<< " mem=" << HexString(d.bss_offset);
}
LOG(INFO) << "TLS: filesz=" << HexString(tls_.filesz) << " memsz=" << HexString(tls_.memsz) << " cnt=" << HexString(tls_.data.size());
}
// Collect .init_array and .fini_array
void Sold::CollectArrays() {
init_array_.emplace_back(mprotect_offset_);
for (auto iter = link_binaries_.rbegin(); iter != link_binaries_.rend(); ++iter) {
ELFBinary* bin = *iter;
uintptr_t offset = offsets_[bin];
bin_to_init_array_offset_[bin] = InitArrayOffset() + sizeof(uintptr_t) * init_array_.size();
for (uintptr_t ptr : bin->init_array()) {
init_array_.emplace_back(ptr + offset);
}
}
for (ELFBinary* bin : link_binaries_) {
uintptr_t offset = offsets_[bin];
if (std::any_of(exclude_finis_.cbegin(), exclude_finis_.cend(), [bin](const auto s) { return HasPrefix(bin->soname(), s); }))
continue;
bin_to_fini_array_offset_[bin] = FiniArrayOffset() + sizeof(uintptr_t) * fini_array_.size();
for (uintptr_t ptr : bin->fini_array()) {
fini_array_.emplace_back(ptr + offset);
}
}
LOG(INFO) << "Array numbers: init_array=" << init_array_.size() << " fini_array=" << fini_array_.size();
}
uintptr_t Sold::RemapTLS(const char* msg, ELFBinary* bin, uintptr_t off) {
const Elf_Phdr* tls = bin->tls();
CHECK(tls);
CHECK(!tls_.data.empty());
auto found = tls_.bin_to_index.find(bin);
CHECK(found != tls_.bin_to_index.end());
const TLS::Data& entry = tls_.data[found->second];
if (off < tls->p_filesz) {
LOG(INFO) << "TLS data " << msg << " in " << bin->name() << " remapped " << HexString(off) << " => "
<< HexString(off + entry.file_offset);
off += entry.file_offset;
} else {
LOG(INFO) << "TLS bss " << msg << " in " << bin->name() << " remapped " << HexString(off) << " => "
<< HexString(off + entry.bss_offset);
off += entry.bss_offset;
}
return off;
}
// Push symbols of bin to symtab.
// When the same symbol is already in symtab, LoadDynSymtab selects a more
// concretely defined one.
void Sold::LoadDynSymtab(ELFBinary* bin, std::vector<Syminfo>& symtab) {
bin->ReadDynSymtab(filename_to_soname_);
uintptr_t offset = offsets_[bin];
for (const auto& p : bin->GetSymbolMap()) {
const std::string& name = p.name;
Elf_Sym* sym = p.sym;
if (IsTLS(*sym) && sym->st_shndx != SHN_UNDEF) {
sym->st_value = RemapTLS("symbol", bin, sym->st_value);
} else if (sym->st_value) {
sym->st_value += offset;
}
LOG(INFO) << "Symbol " << name << "@" << bin->name() << " " << sym->st_value;
Syminfo* found = NULL;
for (int i = 0; i < symtab.size(); i++) {
if (symtab[i].name == p.name && symtab[i].soname == p.soname && symtab[i].version == p.version) {
found = &symtab[i];
break;
}
}
if (found == NULL) {
symtab.push_back(p);
} else {
Elf_Sym* sym2 = found->sym;
int prio = IsDefined(*sym) ? 2 : ELF_ST_BIND(sym->st_info) == STB_WEAK;
int prio2 = IsDefined(*sym2) ? 2 : ELF_ST_BIND(sym2->st_info) == STB_WEAK;
if (prio > prio2) {
found->sym = sym;
}
if (prio == 2 && prio2 == 2) {
LOG(INFO) << "Symbol " << SOLD_LOG_KEY(p.name) << SOLD_LOG_KEY(p.soname) << SOLD_LOG_KEY(p.version)
<< " is defined in two shared objects.";
}
}
}
}
// Push all global symbols of main_binary_ into public_syms_.
// Push all TLS symbols into public_syms_.
// TODO(akawashiro) Does public_syms_ overlap with exposed_syms_?
void Sold::CopyPublicSymbols() {
for (const auto& p : main_binary_->GetSymbolMap()) {
const Elf_Sym* sym = p.sym;
// TODO(akawashiro) Do we need this IsDefined check?
if ((ELF_ST_BIND(sym->st_info) == STB_GLOBAL || ELF_ST_BIND(sym->st_info) == STB_WEAK) && IsDefined(*sym)) {
LOG(INFO) << "Copy public symbol " << SOLD_LOG_KEY(p);
syms_.AddPublicSymbol(p);
} else {
LOG(INFO) << "Don't copy public symbol " << SOLD_LOG_KEY(p);
}
}
for (ELFBinary* bin : link_binaries_) {
if (bin == main_binary_.get()) continue;
for (const auto& p : bin->GetSymbolMap()) {
const Elf_Sym* sym = p.sym;
if (IsTLS(*sym)) {
LOG(INFO) << "Copy TLS symbol " << p.name;
syms_.AddPublicSymbol(p);
}
}
}
}
// Make new relocation table.
// RelocateSymbol_x86_64 rewrites r_offset of each relocation entries
// because we decided locations of shared objects in DecideMemOffset.
void Sold::RelocateSymbol_x86_64(ELFBinary* bin, const Elf_Rel* rel, uintptr_t offset) {
const Elf_Sym* sym = &bin->symtab()[ELF_R_SYM(rel->r_info)];
std::string soname, version_name;
std::tie(soname, version_name) = bin->GetVersion(ELF_R_SYM(rel->r_info), filename_to_soname_);
int type = ELF_R_TYPE(rel->r_info);
const uintptr_t addend = rel->r_addend;
std::vector<Elf_Rel> newrels;
if (bin->IsVaddrInTLSData(rel->r_offset)) {
Elf_Rel newrel = *rel;
const Elf_Phdr* tls = bin->tls();
CHECK(tls);
uintptr_t off = newrel.r_offset - tls->p_vaddr;
off = RemapTLS("reloc", bin, off);
newrel.r_offset = off + tls_offset_;
newrels.emplace_back(newrel);
} else {
Elf_Rel newrel = *rel;
newrel.r_offset += offset;
newrels.emplace_back(newrel);
}
if (bin->IsAddrInInitarray(rel->r_offset)) {
Elf_Rel newrel = *rel;
CHECK(bin_to_init_array_offset_.find(bin) != bin_to_init_array_offset_.end()) << SOLD_LOG_KEY(bin->filename());
newrel.r_offset -= bin->init_array_addr();
newrel.r_offset += bin_to_init_array_offset_[bin];
LOG(INFO) << SOLD_LOG_BITS(bin->init_array_addr()) << SOLD_LOG_BITS(bin_to_init_array_offset_[bin])
<< SOLD_LOG_BITS(newrel.r_offset) << SOLD_LOG_BITS(newrel.r_addend) << SOLD_LOG_BITS(offset);
newrels.emplace_back(newrel);
} else if (bin->IsAddrInFiniarray(rel->r_offset)) {
Elf_Rel newrel = *rel;
CHECK(bin_to_fini_array_offset_.find(bin) != bin_to_fini_array_offset_.end()) << SOLD_LOG_KEY(bin->filename());
newrel.r_offset -= bin->fini_array_addr();
newrel.r_offset += bin_to_fini_array_offset_[bin];
LOG(INFO) << SOLD_LOG_BITS(bin->fini_array_addr()) << SOLD_LOG_BITS(bin_to_fini_array_offset_[bin])
<< SOLD_LOG_BITS(newrel.r_offset) << SOLD_LOG_BITS(newrel.r_addend) << SOLD_LOG_BITS(offset);
newrels.emplace_back(newrel);
}
VLOG(3) << "Relocate " << bin->Str(sym->st_name) << " at " << rel->r_offset;
for (auto newrel : newrels) {
// Even if we found a defined symbol in src_syms_, we cannot
// erase the relocation entry. The address needs to be fixed at
// runtime by ASLR function so we set RELATIVE to these resolved symbols.
switch (type) {
case R_X86_64_RELATIVE: {
if (IsDefined(*sym)) {
LOG(WARNING)
<< "The symbol associated with R_X86_64_RELATIVE is defined. Because this relocation type doesn't need any "
"symbol, something wrong may have happened.";
}
newrel.r_addend += offset;
break;
}
case R_X86_64_GLOB_DAT:
case R_X86_64_JUMP_SLOT: {
uintptr_t val_or_index;
if (syms_.Resolve(bin->Str(sym->st_name), soname, version_name, val_or_index)) {
newrel.r_info = ELF_R_INFO(0, R_X86_64_RELATIVE);
newrel.r_addend = val_or_index;
} else {
newrel.r_info = ELF_R_INFO(val_or_index, type);
}
break;
}
case R_X86_64_64: {
uintptr_t val_or_index;
if (syms_.Resolve(bin->Str(sym->st_name), soname, version_name, val_or_index)) {
newrel.r_info = ELF_R_INFO(0, R_X86_64_RELATIVE);
newrel.r_addend += val_or_index;
} else {
newrel.r_info = ELF_R_INFO(val_or_index, type);
}
break;
}
// TODO(akawashiro) Handle TLS variables in executables.
case R_X86_64_DTPMOD64: {
// TODO(akawashiro) Refactor out for Arch64
const std::string name = bin->Str(sym->st_name);
uintptr_t index = syms_.ResolveCopy(name, soname, version_name);
newrel.r_info = ELF_R_INFO(index, type);
if (bin->tls() == NULL) {
LOG(INFO) << SOLD_LOG_64BITS(bin->tls()) << " is null. This relocation is TLS generic dynamic model.";
break;
}
uint64_t* mod_on_got = reinterpret_cast<uint64_t*>(bin->head_mut() + bin->OffsetFromAddr(rel->r_offset));
uint64_t* offset_on_got = mod_on_got + 1;
const bool is_bss = bin->IsOffsetInTLSBSS(*offset_on_got);
// We assume dl_tls_index exists in GOT. This struct is used as
// the argument of __tls_get_addr.
//
// typedef struct dl_tls_index
// {
// uint64_t ti_module; <--- mod_on_got
// uint64_t ti_offset; <--- offset_on_got
// } tls_index;
//
// In TLS generic dynamic model, both ti_module and ti_offset are
// rewritten by R_X86_64_DTPMOD64 and R_X86_64_DTPOFF64,
// respectively.
//
// In TLS local dynamic model, the only ti_module is rewrite by
// R_X86_64_DTPMOD64 and ti_offset is fixed in the link process. We
// must rewrite the fixed ti_offset because we remap the TLS
// template.
std::vector<int> rewrite_rel_types; // Type of relocations which rewrite ti_module.
for (size_t i = 0; i < bin->num_rels(); ++i) {
if (rel->r_offset + sizeof(uint64_t) <= bin->rel()[i].r_offset &&
bin->rel()[i].r_offset < rel->r_offset + sizeof(uint64_t) + sizeof(uint64_t)) {
rewrite_rel_types.emplace_back(ELF_R_TYPE(bin->rel()[i].r_info));
}
}
CHECK(rewrite_rel_types.size() == 0 || (rewrite_rel_types.size() == 1 && rewrite_rel_types[0] == R_X86_64_DTPOFF64))
<< SOLD_LOG_KEY(rewrite_rel_types.size()) << SOLD_LOG_KEY(ShowRelocationType(rewrite_rel_types[0]));
if (rewrite_rel_types.size() == 1) {
LOG(INFO) << "R_X86_64_DTPOFF64 exists next to R_X86_64_DTPMOD64. This relocation is TLS generic dynamic model.";
break;
}
LOG(INFO) << "R_X86_64_DTPMOD64 relocation in TLS local dynamic model. " << SOLD_LOG_KEY(*rel) << SOLD_LOG_KEY(newrel)
<< SOLD_LOG_64BITS(bin->OffsetFromAddr(rel->r_offset)) << SOLD_LOG_64BITS(*mod_on_got)
<< SOLD_LOG_64BITS(*offset_on_got) << SOLD_LOG_64BITS(bin->tls()->p_filesz) << SOLD_LOG_KEY(is_bss)
<< SOLD_LOG_64BITS(tls_.data[tls_.bin_to_index[bin]].file_offset)
<< SOLD_LOG_64BITS(tls_.data[tls_.bin_to_index[bin]].bss_offset);
// We cannot determine whether the associated symbol is a dummy or
// not just using its index. In addition to the traditional dummy
// symbol at index 0, I found some compilers emit a dummy symbol at
// index 1 of SECTION type.
CHECK_EQ(name, "") << "The symbol associated with R_X86_64_DTPMOD64 in TLS local dynamic model should be the dummy."
<< SOLD_LOG_KEY(bin->filename());
if (is_bss) {
// TLS variables without initial values are remapped from
// [bin->tls()->p_filesz, bin->tls()->p_memsz) to
// [tls_.data[tls_.bin_to_index[bin]].bss_offset,
// tls_.data[tls_.bin_to_index[bin]].bss_offset + bin->tls()->p_memsz - bin->tls()->p_filesz)
*offset_on_got += tls_.data[tls_.bin_to_index[bin]].bss_offset - bin->tls()->p_filesz;
} else {
// TLS variables with initial values are remapped from
// [0, bin->tls()->p_filesz) to
// [tls_.data[tls_.bin_to_index[bin]].file_offset,
// tls_.data[tls_.bin_to_index[bin]].file_offset + bin->tls()->p_filesz)
*offset_on_got += tls_.data[tls_.bin_to_index[bin]].file_offset;
}
break;
}
case R_X86_64_DTPOFF64:
case R_X86_64_TPOFF64: {
const std::string name = bin->Str(sym->st_name);
uintptr_t index = syms_.ResolveCopy(name, soname, version_name);
newrel.r_info = ELF_R_INFO(index, type);
LOG(INFO) << ShowRelocationType(type) << " relocation: " << SOLD_LOG_KEY(*rel) << SOLD_LOG_KEY(newrel)
<< SOLD_LOG_64BITS(bin->OffsetFromAddr(rel->r_offset));
break;
}
case R_X86_64_COPY: {
const std::string name = bin->Str(sym->st_name);
uintptr_t index = syms_.ResolveCopy(name, soname, version_name);
newrel.r_info = ELF_R_INFO(index, type);
break;
}
default:
LOG(FATAL) << "Unknown relocation type: " << ShowRelocationType(type);
CHECK(false);
}
rels_.push_back(newrel);
}
}
// Make new relocation table.
// RelocateSymbol_aarch64 rewrites r_offset of each relocation entries
// because we decided locations of shared objects in DecideMemOffset.
void Sold::RelocateSymbol_aarch64(ELFBinary* bin, const Elf_Rel* rel, uintptr_t offset) {
const Elf_Sym* sym = &bin->symtab()[ELF_R_SYM(rel->r_info)];
std::string soname, version_name;
std::tie(soname, version_name) = bin->GetVersion(ELF_R_SYM(rel->r_info), filename_to_soname_);
int type = ELF_R_TYPE(rel->r_info);
const uintptr_t addend = rel->r_addend;
std::vector<Elf_Rel> newrels;
if (bin->IsVaddrInTLSData(rel->r_offset)) {
Elf_Rel newrel = *rel;
const Elf_Phdr* tls = bin->tls();
CHECK(tls);
uintptr_t off = newrel.r_offset - tls->p_vaddr;
off = RemapTLS("reloc", bin, off);
newrel.r_offset = off + tls_offset_;
newrels.emplace_back(newrel);
} else {
Elf_Rel newrel = *rel;
newrel.r_offset += offset;
newrels.emplace_back(newrel);
}
if (bin->IsAddrInInitarray(rel->r_offset)) {
Elf_Rel newrel = *rel;
CHECK(bin_to_init_array_offset_.find(bin) != bin_to_init_array_offset_.end()) << SOLD_LOG_KEY(bin->filename());
newrel.r_offset -= bin->init_array_addr();
newrel.r_offset += bin_to_init_array_offset_[bin];
LOG(INFO) << SOLD_LOG_BITS(bin->init_array_addr()) << SOLD_LOG_BITS(bin_to_init_array_offset_[bin])
<< SOLD_LOG_BITS(newrel.r_offset) << SOLD_LOG_BITS(newrel.r_addend) << SOLD_LOG_BITS(offset);
newrels.emplace_back(newrel);
} else if (bin->IsAddrInFiniarray(rel->r_offset)) {
Elf_Rel newrel = *rel;
CHECK(bin_to_fini_array_offset_.find(bin) != bin_to_fini_array_offset_.end()) << SOLD_LOG_KEY(bin->filename());
newrel.r_offset -= bin->fini_array_addr();
newrel.r_offset += bin_to_fini_array_offset_[bin];
LOG(INFO) << SOLD_LOG_BITS(bin->fini_array_addr()) << SOLD_LOG_BITS(bin_to_fini_array_offset_[bin])
<< SOLD_LOG_BITS(newrel.r_offset) << SOLD_LOG_BITS(newrel.r_addend) << SOLD_LOG_BITS(offset);
newrels.emplace_back(newrel);
}
LOG(INFO) << "Relocate " << bin->Str(sym->st_name) << " at " << rel->r_offset;
for (auto newrel : newrels) {
// Even if we found a defined symbol in src_syms_, we cannot
// erase the relocation entry. The address needs to be fixed at
// runtime by ASLR function so we set RELATIVE to these resolved symbols.
switch (type) {
case R_AARCH64_RELATIVE: {
if (IsDefined(*sym)) {
LOG(WARNING)
<< "The symbol associated with R_AARCH64_RELATIVE is defined. Because this relocation type doesn't need any "
"symbol, something wrong may have happened.";
}
newrel.r_addend += offset;
break;
}
case R_AARCH64_GLOB_DAT:
case R_AARCH64_JUMP_SLOT: {
uintptr_t val_or_index;
if (syms_.Resolve(bin->Str(sym->st_name), soname, version_name, val_or_index)) {
newrel.r_info = ELF_R_INFO(0, R_AARCH64_RELATIVE);
newrel.r_addend = val_or_index;
} else {
newrel.r_info = ELF_R_INFO(val_or_index, type);
}
break;
}
case R_AARCH64_ABS64: {
uintptr_t val_or_index;
if (syms_.Resolve(bin->Str(sym->st_name), soname, version_name, val_or_index)) {
newrel.r_info = ELF_R_INFO(0, R_AARCH64_RELATIVE);
newrel.r_addend += val_or_index;
} else {
newrel.r_info = ELF_R_INFO(val_or_index, type);
}
break;
}
case R_AARCH64_TLSDESC: {
const std::string name = bin->Str(sym->st_name);
if (name == "") {
LOG(INFO) << SOLD_LOG_KEY(name) << "R_AARCH64_TLSDESC in local dynamic";
uintptr_t index = syms_.ResolveCopy(name, soname, version_name);
newrel.r_info = ELF_R_INFO(index, type);
const bool is_bss = bin->IsOffsetInTLSBSS(newrel.r_addend);
if (is_bss) {
LOG(INFO) << "R_AARCH64_TLSDESC" << SOLD_LOG_BITS(newrel.r_addend)
<< SOLD_LOG_BITS(tls_.data[tls_.bin_to_index[bin]].bss_offset - bin->tls()->p_filesz);
newrel.r_addend += tls_.data[tls_.bin_to_index[bin]].bss_offset - bin->tls()->p_filesz;
} else {
LOG(INFO) << "R_AARCH64_TLSDESC" << SOLD_LOG_BITS(newrel.r_addend)
<< SOLD_LOG_BITS(tls_.data[tls_.bin_to_index[bin]].file_offset);
newrel.r_addend += tls_.data[tls_.bin_to_index[bin]].file_offset;
}
break;
} else {
LOG(INFO) << SOLD_LOG_KEY(name) << "R_AARCH64_TLSDESC in generic dynamic";
uintptr_t index = syms_.ResolveCopy(name, soname, version_name);
newrel.r_info = ELF_R_INFO(index, type);
break;
}
}
case R_AARCH64_COPY: {
const std::string name = bin->Str(sym->st_name);
uintptr_t index = syms_.ResolveCopy(name, soname, version_name);
newrel.r_info = ELF_R_INFO(index, type);
break;
}
default:
LOG(FATAL) << "Unknown relocation type: " << ShowRelocationType(type);
CHECK(false);
}
rels_.push_back(newrel);
}
}
std::string Sold::ResolveRunPathVariables(const ELFBinary* binary, const std::string& runpath) {
std::string out = runpath;
auto replace = [](std::string& s, const std::string& f, const std::string& t) {
size_t found = s.find(f);
while (found != std::string::npos) {
s.replace(found, f.size(), t);
found = s.find(f);
}
};
std::string origin = binary->filename();
origin = dirname(&origin[0]);
replace(out, "$ORIGIN", origin);
replace(out, "${ORIGIN}", origin);
if (out.find('$') != std::string::npos) {
LOG(INFO) << "Unsupported runpath: " << runpath;
abort();
}
return out;
}
std::vector<std::string> Sold::GetLibraryPaths(const ELFBinary* binary) {
std::vector<std::string> library_paths;
const std::string& runpath = binary->runpath();
const std::string& rpath = binary->rpath();
if (custome_library_path_.empty()) {
if (runpath.empty() && !rpath.empty()) {
for (const std::string& path : SplitString(rpath, ":")) {
library_paths.push_back(ResolveRunPathVariables(binary, path));
}
}
}
for (const std::string& path : ld_library_paths_) {
library_paths.push_back(path);
}
if (!runpath.empty()) {
for (const std::string& path : SplitString(runpath, ":")) {
library_paths.push_back(ResolveRunPathVariables(binary, path));
}
}
if (custome_library_path_.empty()) {
std::vector<std::string> ldsoconfs = ldsoconf::read_ldsoconf();
library_paths.insert(library_paths.end(), ldsoconfs.begin(), ldsoconfs.end());
library_paths.push_back("/lib");
library_paths.push_back("/usr/lib");
library_paths.push_back("/usr/lib64");
}
library_paths.insert(library_paths.end(), custome_library_path_.begin(), custome_library_path_.end());
return library_paths;
}
// This implementation is compatible with _dl_sort_maps in glibc/elf/dl-sort-maps.c.
std::vector<ELFBinary*> TopologicalSort(std::vector<std::pair<std::string, ELFBinary*>> link_binaries_buf) {
if (link_binaries_buf.size() < 1) {
return {};
}
// The third element of tuple is `seen' variable in glibc/elf/dl-sort-maps.c
std::list<std::tuple<std::string, ELFBinary*, int>> buf;
for (const auto& p : link_binaries_buf) buf.emplace_back(p.first, p.second, 0);
auto i_it = buf.begin();
int n_rest = buf.size();
while (1) {
std::get<2>(*i_it)++;
auto k_it = buf.end();
k_it--;
while (i_it != k_it) {
const auto& neededs = std::get<1>(*k_it)->neededs();
if (std::find(neededs.begin(), neededs.end(), std::get<0>(*i_it)) != neededs.end()) {
buf.insert(buf.end(), *i_it);
i_it = buf.erase(i_it);
if (std::get<2>(*i_it) > n_rest) break;
goto next;
}
--k_it;
}
if (i_it == buf.end() || ++i_it == buf.end()) break;
for (auto it = i_it; it != buf.end(); it++) std::get<2>(*it) = 0;
next:;
}
std::vector<ELFBinary*> ret;
for (const auto& t : buf) ret.emplace_back(std::get<1>(t));
return ret;
}
void Sold::ResolveLibraryPaths(ELFBinary* root_binary) {
// We should search for shared objects in BFS order.
std::queue<const ELFBinary*> bfs_queue;
std::vector<std::pair<std::string, ELFBinary*>> link_binaries_buf;
bfs_queue.push(root_binary);
link_binaries_buf.emplace_back("", root_binary);
while (!bfs_queue.empty()) {
const ELFBinary* binary = bfs_queue.front();
bfs_queue.pop();
std::vector<std::string> library_paths = GetLibraryPaths(binary);
for (const std::string& needed : binary->neededs()) {
auto found = libraries_.find(needed);
if (found != libraries_.end()) {
continue;
}