-
Notifications
You must be signed in to change notification settings - Fork 0
/
ipython-notebook-integration.html
846 lines (817 loc) · 57.9 KB
/
ipython-notebook-integration.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
<!DOCTYPE html>
<html lang="en-US">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="author" content="Adam Stevenson" />
<meta name="copyright" content="Adam Stevenson" />
<!-----google web fonts---->
<link href='http://fonts.googleapis.com/css?family=Lato:300,400|Droid+Serif:400,400italic' rel='stylesheet' type='text/css'>
<!---Setting for ipython notebook liquid tags--->
<!--END setting for ipython notebook liquid tags--->
<meta name="keywords" content="python, science, Blog Setup, " />
<title>IPython Notebook Integration · Adam J. Stevenson
</title>
<link href="http://cdn-images.mailchimp.com/embedcode/slim-081711.css" rel="stylesheet" type="text/css">
<link href="//netdna.bootstrapcdn.com/twitter-bootstrap/2.3.1/css/bootstrap-combined.min.css" rel="stylesheet">
<link rel="stylesheet" type="text/css" href="/theme/css/style.css" media="screen">
<link rel="stylesheet" type="text/css" href="/theme/css/solarizedlight.css" media="screen">
<link rel="shortcut icon" href="/theme/images/favicon.ico" type="image/x-icon" />
<link rel="apple-touch-icon" href="/theme/images/apple-touch-icon.png" />
<link rel="apple-touch-icon" sizes="57x57" href="/theme/images/apple-touch-icon-57x57.png" />
<link rel="apple-touch-icon" sizes="72x72" href="/theme/images/apple-touch-icon-72x72.png" />
<link rel="apple-touch-icon" sizes="114x114" href="/theme/images/apple-touch-icon-114x114.png" />
<link rel="apple-touch-icon" sizes="144x144" href="/theme/images/apple-touch-icon-144x144.png" />
<link rel="icon" href="/theme/images/apple-touch-icon-144x144.png" />
</head>
<body>
<div id="content-sans-footer">
<div class="navbar navbar-static-top">
<div class="navbar-inner">
<div class="container">
<a class="btn btn-navbar" data-toggle="collapse" data-target=".nav-collapse">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</a>
<a class="brand" href="/"><span class=site-name>Adam J. Stevenson</span></a>
<div class="nav-collapse collapse">
<ul class="nav pull-right top-menu">
<li ><a href="">Home</a></li>
<li ><a href="/pages/research.html">Research</a></li>
<li ><a href="/pages/publications.html">Publications</a></li>
<li ><a href="/categories.html">Categories</a></li>
<li ><a href="/tags.html">Tags</a></li>
<li ><a href="/archives.html">Archives</a></li>
<li><form class="navbar-search" action="/search.html" onsubmit="return validateForm(this.elements['q'].value);"> <input type="text" class="search-query" placeholder="Search" name="q" id="tipue_search_input"></form></li>
</ul>
</div>
</div>
</div>
</div>
<div class="container-fluid">
<div class="row-fluid">
<div class="span1"></div>
<div class="span10">
<article>
<div class="row-fluid">
<header class="page_header span10 offset2">
<h1><a href="/ipython-notebook-integration.html"> IPython Notebook Integration <small> Testing ipython notebooks with the LiquidTags plugin </small> </a></h1>
</header>
</div>
<div class="row-fluid">
<div class="span8 offset2 article-content">
<p>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>So, this appears to not be so hard to do. If I am able to get it to work, that will be proof of how good the plugins, documentation, and other resources are out there. In roughly 1 hour, I have gone from nothing, to a functional blog that effortlessly publishes Ipython Notebooks. Truly amazing stuff.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">matplotlib</span> <span class="k">import</span> <span class="n">pyplot</span> <span class="k">as</span> <span class="n">plt</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">x</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">50</span><span class="p">,</span><span class="mi">200</span><span class="p">)</span>
<span class="n">y1</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">y2</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="mi">3</span><span class="o">*</span><span class="n">x</span><span class="p">)</span>
<span class="n">y3</span><span class="o">=</span><span class="mi">3</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y1</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y2</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y3</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[7]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>[<matplotlib.lines.Line2D at 0xba6168c>]</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzsfXmQJFd55y/rzLqPPue+Nbeme0bSjOQBRqBjBYF8SUis
ZTBgm12bNUfYEbARiwW7BMaWlwAkrWXWEhiHhWSMwDZCLNiSsaQ5NPfVM5qemZ7pmenqo+4jM+vK
/eNVVmVV5V2ZNdWt/iImpO6qev2r773v913vvaR4nuexKIuyKIuyKPNabDcbwKIsyqIsyqJ0Lotk
viiLsiiLsgBkkcwXZVEWZVEWgCyS+aIsyqIsygKQRTJflEVZlEVZALJI5ouyKIuyKAtAOiJzlmWx
e/dujIyMYMuWLfjCF75gFq5FWZRFWZRF0SFUp/vMC4UCvF4vyuUy9u7diyeeeAJ79+41C9+iLMqi
LMqiaJCOyyxerxcAUCwWUalUEI1GOwa1KIuyKIuyKPqkYzKvVqsYGRnB0NAQ7r77bmzZssUMXIuy
KIuyKIuiQxydDmCz2XD8+HGk02ncf//9eO2117Bv37766xRFdfonFmVRFmVR3pGipwpu2m6WUCiE
D3zgAzh8+LAkoPq/D30I/O23N//OjH+/+7vgX3rJvPE++UnwGzaYivFP//RPwf/e74F/5hnzxv38
58EPDJivz099Cvz//J/mjfe1r4GnafDlckMXZoz7x38M/tOfNg/nM8+ApyjwuZy5+vwf/wP8Y4/J
rwu94734IngA/NSUuTi/+lXw73+/eeP9v/9HcI6NaXq/Zl1861vg9+wxD+dbbxGcBw6Yq89nnwW/
caOhz+qVjsh8bm4OqVQKAMAwDH7+859jdHRU+UNTU8DYGGAArKxcvAg8+ywwPm7emFNTZFyWNW/M
XA747neBK1fMGzMWA2ZnyT+zJJ0GnnsOuHHDvDFjMaLLS5fMG5NlybxPT5s3ZixG1uaZM+aNWakA
3/mOuXMUi5H/njxp3pg8D3zve8DcnHljCjhPnDBvTAD4+78H4nHzxhPW0PHj5o0JAC++aC5OBemI
zKempvDe974XIyMj2L17Nz74wQ/ife97n9qHgEIBuHatkz/dLE88AYRCQCJh3phTU+S/58+bN+Zb
bwFer/k4bTZzyee73wXsdnMXoYDz9GnzxvzhD4FSyVycsRjBeeqUeWP+678CyaQ1OM0k86NHSaBh
NknabOaS+aVLZH6swGkmmcfjwJtvkrmvVs0bV0Y6IvPt27fj6NGjOH78OE6ePIk/+ZM/Uf/Q1BSw
cydw9mwnf7oh09PACy8An/mM+eSza5d5OBkG+06cAD77WfON+rbbzCPzahV46ing05821+kIOGtk
Lu6rGJZnngH+4A/Mx3n77eaS+bPPAr//+7LzbkgXsRhwxx3mkvnf/i3w8Y+bvz5379ZM5pp08f3v
A7/1WySDrFQ6wyeIgNNMMn/pJeC++wC/n2C1WLp7AjSbJWSxezcptZghb7wB7N0LbNpknlFXq8RJ
vPe95pH5wYPYt2kTcOed5kfm73ufeWR+9ixQLgMPPmi+Ud9zj3lkHosRwv3Yx8zHee+95pE5wwA/
+QnwqU+ZS+bT04QozCJzngeefx74b/+N2Gm5bM64Ak6zyfyxx4BgkES9Zsj0NHD//WTezXIQL74I
fOhDQF+fuaUrGekumU9NAUuWAFu2mEeS6TQQjZJ/ZpFkIkG86c6d5pFkKgUMDpKJNYt8ymWCdd8+
83AmEsCyZebiBMjc33uveWWW2Vlg6VJgaKi3yTyRIKSzahWQz5OykBkSi5Fg4+23zRmTYQiJb9gA
hMPmkaQQ8WYy5s3T+fMkyzNzjU5PA7fcQmz04kVzxjx1CrjrLvNtSUa6T+ZLlxIyNysyz2RIvdxM
hU1NAcPD5jodAaeZTmdmBujvB269lZCkGU3lTIaQT1+feTgZhvzbs4fUOzmu8zEFnKEQGbtY7HxM
nifks3MnIUgzGqsCTpsNiETM02ksBqxZA6xYQQi9UxFwAuaT5JIlZI2akUVwHJknt9tcnLEYCQxG
RswrtWQyxDH29y9QMl+yBNi8mZCkGeSTTpNFaCZJCjhvuYU0hMwgHwGnmSQpOJ2hIfKzGeQj4AwE
yG4RM0hyeprgpGlg9WpzyYeiCEmaEUlms6Tx6/cD27ebE51bQZLVKnHkQ0PmkaRVZB6LkbnfscOc
Jqh43s0kSWGNjowAx451Pl65TOzH613gZZbBQULkZmzVEibXCjJ3ucwln1CIEAXHmUOSsRjBSVHA
1q3mlFrExhKNmmMsgtMBzMOZThN9AuaRj0A8AMFpRvZoBUkKZUC3m/SKzNhxZQVOoQzY30/KN2Zs
S7UygxgaItnO5GTn42WzJCAy2+koyM0hc4oC1q4FJiY6H1Mwar+fEKQZUbRAkgBJY83Yb91KkmY4
HjFJLl1KorVORXA6gHk4xfocHDRnTLFRm+V0xGQejZqzA8EKpyNEkQBJ47PZzscUz7tZOGdnyVgO
B5mrXK7zMVvJ3IyIl+MItkiEEHCv4lSRm0PmgPlKM5skzcYplC8Ac8lHwOn3W7MIzSbJdzpOs5yj
UFrz+80jc6v12as4Z2ZIkGGz9TZOFbl5ZG6msZgdSVqN0yyjtgKn2OmYidNqozaLJOcD+YhxWhFs
mJlBCE7HqojXCpxmz/uCLrMA1pGP2TVeKyI0K8oCVpCPFTh7mXyswPlOjnitxmkWSbZmOotlFg0i
bE0E5ldkbsYitCritaJsZUVj0epMZz6Qj1VOvFfJZz5F5mIn3qvOUUW6R+YsSw5NCA+vMEtprbXo
+UCSVuwSeSeXWXo5g+gG+fQqzvmSQVjtdBZcmUUwaOF+815thOVyZB+vMGavNsKEAy7zrRxkFflY
UTPvxfUJzJ8G6HyJzKX02ekZGKlMx8ybYiWke2SeTDaicsAcY6lWyRiBAPnZjMh8bo54UrOdjniL
mhkkmcuRAy4+H/nZzPTQzEYtzzcb9XwhSSsyx8XafudjWkGS4kzH6SRbKTvd4pzNNnDSNBnXjHlS
kO6ReaHQIB7AHKPO5cgJK7ud/GwGmefzBJsgZixCnieLUHA6ZpBkLteOsxcjc+FwFE2T/5rZgzC7
Zp5Ok73GQG87nUSiERhZGZl3SpJCYAQQO+W4zi+xEuOkaXKwr9N5mp0FBgYaP5uhUzFOoCullu6R
eT5vPpmLDRowh3zyebLwBDEj8mEY4pldLvKzGTitcI6A+ZFk67z3aiTJ82SePB7ys5Vk3ilJiude
wGlmWcCsSFIcGFEUwdzpmK0kaVZpVQi0AHOyMnHwBnRlR0t3ybyVJM32fmZEvFaQZKvTMQOnFU5H
iJyEKNosfYpxWpVBJBKdERrDkO9tq5mEFWUrM0lS0KnDQYIEhukcp9kk2Tr3ZqxRK3BaEWhagVNF
5neZRWwogHllFrPJp3VirYrMOyWfbJboU+gXCDg7IUkpQ+kUZ6VCyEsY1+MhJFwoGB+zlXhomtwt
0un1smYHHAImweEC84skzVij3XA6i2UWBbGCJMUlAaB3SdIqp2NFBiHWp9dLiL2TqE8qMs/nO3MQ
2SwZxyZavp0adas+KapznfJ848IlQTpdo4I+BYcLWFPj7VSfPN8dkjTL6XQjg1gwZRarInOzyyxW
1HhbcXq9ZCeOmSRpBU6gc/Jp1afdTm776ySKbi1bAZ0bdas+gc7XaKFAvqvD0fidGTjF+gR6MzIv
lYjDcTobv+vV8oVVAZwYp1nXNCvIwmqA+nxkEbGs8TG7kUGYcSlYqz7d7s7LAnJk3ilOs0lSCmck
Qp7mZFRa9Ql0TpJSOMPhzm5jlHM6nZCP+IEPgnT63eX0aTZJ+nydBQatjW/AGufYKU4NcnMboGYr
jKLIz5mM8TFbvbTP13lZoLXMAphjLGJ9mlEWkMLZ6SK0IpKUIkmvtzOcck6nE/JpdeIAIY1OMjIp
kjTLOYpLN53q04pMp7VXAnSOk2VJA1nY3izgNNvpeL2dN6lV5OaWWTpVmFS63anSrCgLyJFPp2UW
s0lSinx6kSSl9NkpSUrp04oMwgqS7DTilXLiVjidTnGKH/ggSC/qU6pX4vEssMi8tSxQqXT2xJ1u
GUunRi0XoVlBkr1IPvOBJKX0aVUG0auRuVh60Y66mZF12iuh6eZeSac4NcjNK7MIZYF83viYUpG5
VRGF2eULq0iy1yJeK/Qpl5HNF31aEUn2GknKZY69tj67hXNBkfl8jtCswGkGSZpt1FaR5Hwos1gV
mZutT7nIvNfIZz5ljvMBpwa5eZE5YB35WFE77bQR1i2j7rVFOF9wdisyt6rGa0UZ8J0Q8VpR2289
yg8ssAZotyIKM2rR85l8ei2DmC9lgfleM+9FkpwPEW+31ueCaoDO5zKLVZNrdlnADKOeL2WBbtXM
e63xPV+co1W7buaLHc23Msvk5CTuvvtubN26Fdu2bcM3v/lN+Tdb4amtaIBaZdTdIJ9e3JrYzd1B
7wSjnk+R+XwI3uZLOUiDdETmTqcTX//613HmzBkcOHAATz31FMbGxqTfPF8mdz6Vg+ZLo3Y+HBrq
5uEms8tWvTjv3YrMezHYmI9kPjw8jJGREQCA3+/H5s2bcePGDek3m20s1ar0mL04ucLFUGLpxUat
XOOmF3ezmI1zvtR4rWrYzdeeznzS53xpgE5MTODYsWPYvXt3+4s8b34ay7Lk4JH4NBjQm5Ekw7R/
916s7VuF02yjbn0aFNCbuy9anwYFWFMzNyPY6IZztGKXiBUZhFWZTqFg6XNAHepvUZdcLoeHHnoI
3/jGN+BvXbwAHv/iF8mX+MpXsG/fPuzbt4+80InSWi/HEcTr7ex2MjmnMzNjbDyeJxcZie+fBnrz
jg4pnfbi/m3hQRJi6cXIXEqfVuxm6ZQkrcBpRWRuRSYupU+Ph1xYVy43n+LUM+by5c2/s9vJDZJS
XFCT1157Da+99pr+v1eTjsm8VCrhN3/zN/HYY4/h137t1yTf8/jnPgc8+STw+OPNL/j95Pl7RoRl
5clcrtSjJsINamZnEC5XewbRi2msnFH32v5tqbnvRZxW6bMbTseqnk42S+ys1R604pQLioyOWSgA
g4PNvxNOp2ezjWfC6sUpx03CUX8JaQp0AXzpS1/S9Wc7KrPwPI9PfOIT2LJlCz7zmc/Iv1FqYgFr
IvNOFiHDkNKN+AY1wLoMopfSWLkMohfLLPM5g7DiHIRVkbnZztHpJP+MXlEt5cRtNmKzRsfsJjdZ
3ATtiMzfeOMN/N3f/R1effVVjI6OYnR0FK+88kr7G6UWINCZsVihMKmoB+hsYuUyiE7Ip1olxNs6
bqc4Xa7mp/d0ihOwZldDNzOITsjcqgyiVZ8eD7mwrlw2NqaUPmmarLFq1TycQGdzb0UAZwVOlpWO
vi1ugnZUZtm7dy+qWiZbiSStmFijCptPTsfjaU8rO40m5BZgL0XmPC9tLFbVzDstC3SjZi6+tK71
PIMWkdKnzUZ+x7LStqsFp1Jg1Fra0CJKtmRUp1JOHHjnReaaRY4ke01hSjh7LZow2+ko9SCM4iyV
yDXHLlfz73s1g5AqCzgcJEI1IlJz73aTKLpSMY6zm4GRFWu0E5xmBxxyTqfXMggN0h0yt8r7mZ3K
WFFmsSKaUIp6einTEeZdqvnLssYIzQqnI7d1FjBu1HIZBEWZo9NWsWLurSDJTjcTWJHlSunT5+ut
QFODdC8ynw8NUKsyCCuiiflg0HLO0WYjvzdyl70cTpeL1IyN1I1LJYJJ/PBhQYTHBuoVjiNRfWsz
HbDGkXfyeD+r5l5qjXo8xpuVVtm8lD47walUM18QZG42+VjlpeUMpZecjhxOl4tEhEYIrZtlK8B4
dCqHs5OIV86gAeNGLbc+AeM65Xn5uRfq20bGtKJhp0SSRse0qmZuNplbgVOD3NwyS68pTI58OvXS
3cIJGMcql0E4nWRHQ6mkf0w5QwGMk4/cvAPGdSq3PgGC00ynAxh35FIPHxaPaUSfxaJ8BmFFzdzo
vAPWZLlKOK1wOgsiMu+W97OizOJ0kvpur0S8VpCPnNOhKOMkaYXTkYsiAeM6VYrMe83pKOE02+kY
1We1Kj9PRiNzIYPoVm2/U6ezYBugckbda95PzliEFN7IrgY5nE4nWaBGIt6bQT5GSXI+RLxKzrGT
TKfb+uwVnMKYrTuOAOM4SyWSPXQrg+ikHLSga+ZKNd5y2diuBrXdF0YutLGKfJQiyV6JeNVI0opI
slciXjXnaMW8G3U6SrV9MzMywJoMwirnaARnpULKTG53+2ud9CAWfJlFinwoqnHSTK8o1Xgpan5E
vJ1EkvMh3e5mAxSwhiSNzrsSSXbSqLUiMpdzOkbX580IijqZd6kDYUadjrAzSuqCrgXRALVicq2K
KLqdbveSUc8Hkuw2+cwXp9NL5aBuO8dOcM4Hp6NRbm6ZBeitiPdmOJ1eSbfVSLJXykHdLgv0knPs
dg+i19anFfbezS2pC7oBCiz8iOJmOJ1einwWy0Ht0kuRuRXOsdvloF6LzM2ed41y88ncql0NVkSS
VkyuFfuie8U5drscZFUPwuwtlFbVzK3IyOZDZG5F47uXgkyNsjDLLL1GPt3cF91LxjKfjHo+OMd3
sh3Np8zR7N1rGuXmR+a91FjsdoOpl8os8wnnfNjyt1gOkn6tl+zIigzXCqejUXojMu+V9NCq/cbz
3elYUZPspQbTzXCOvdKovRk1817ZJdLtMsuCaIAqLZhe8oBKF/Fbtd+4kxN2UtJL6WE+bw3O+bL7
wgry6fZhsflSDrKi99Qr61OjdI/MlaLoXpncm4HTCjLvFadjhRO3Yt4ZZn7si74ZTrxXnKMV+lQK
NjrJHBf0PnOlL9hLd3RYhdPsiNeKnRJWOJ1uO0er5r1XnM7NcI7zwYl3Mu/zoayqUXqDzHtpEXYT
5zuBfMx2jlZEPt12jlbMu1URby8FG92e917hJY3SHTKvVqXvKgCsi9AWcpllITid+VJeWww29I+5
UIINq/Rp5BJADdIdMqdp+aeb91KjodvloHdy5LPQy2s3I4Pola2eVuC0asODFZmO3JjCQ0CKRf3j
apDukbnSa3onV+nqSsAYSQpP02l9krwgvbSVzoqIotvp9nyJeOdL5vhODoqMRrxKON1ucpur3jGV
cAKWllpuPpkbMRaOU472jZAkx5EJ7HYGMR9IstfKLN1sKC90p3MzauZmz7vRiFdpTOEB33qv59ZC
5hY1QW8+mRshSSu8n9ICBIwZNc83nISUGCFJ4fFZSmMu5Ait25nOQtfnzYh4GaY3Il41mzfieN7R
kbkRkrTC+1kxsSxLyjZSj88CjE1ssUgiBqnHZwHv7AbTfGks9po+5ca028laM7Lu1aJovQ+PUXLi
gDFHriWAs4JHFiyZW+H9emVib4bTMYJTiPaVolOjGcQ7NeLVok8zI15Bn2ZHvEaDGDWbN2JLVgRb
3eYmmjb2ZDUNcvPJfCGXWW6G07EigzCCs1wm/Qe5LalWRLydNH+72QAVHitmJDpVingpiuhd75hq
5GM2SVphS/MJ54KumVtBkvPBS1uB0+iiNjuasEKfatG+FWRuhdMxOu7NiiTfyTjNDjSNricN0jGZ
f/zjH8fQ0BC2b98u/yYrJtYKQut2/Wy+LECrnI5enMVio+YqJU4n+a+e6LRSIe8XPis1ZqVC/umR
mxVJ9gL5aLFPI7Y0HyJzK8bUKB2T+cc+9jG88sorym96p07sQkoNrYj2zcZpZFy1ba4UpX9Mnr85
NV6riLdXIvOFEBj1Mpm/613vQiQSUX4TTaNUKeHVy69KvsamWfzkJzoyeQtJsspXpXF6PCjnWPzz
P+soH1uIk+d5/PvEv0uOWS0w+PGPgWzWJJxOJ4le9USnIkN54+ob7a+73eBLJfzoHytIpUzCCejX
qQjnwWsHwUs0EHmaxk9+wGBuTuOYpRLJHuT6BUZw8nz9oNzRqaOo8tW2t1RpD37+TwymprQPq2mX
CMtK6kVxTJrGqelTqFTb1wzvpvHLnzGYnNSBU6MtSelFDef5ufMoVdr7FzxN49AvWVy6ZD7OYsX8
U6BdqZk/PjaGT/7xJ/GB3/8AXn21mSgnZjy4dJbFl78MLF0K7N+vYUCNCnvizSfwo3M/0gayNrFn
Zs7g/X///rbJnUrSmLvG4CtfITh/9jPzcD556Ek8d+w5XTivZa7h7u/ejQyXaXp5Lu9BMcPiK18B
li0DXnxRI06lCKUWnT534K/wxJtP6MKZ4TLY+9xe3MjeaHo5m6PAwY2/+AqHlSuBb3/bBJwAQNP4
4bHn8flffF4Xzkq1gnd/590YmxtrepnjiE6/+ecs1q0D/vzPNeLU4HT+bexl/O4//a42nBxHmtQU
hfu+dx8OXjvY9HK5DFydofHMN1hs2QJ84QvahtWyRg9feh2/+v1f1Tgg6jr99Rd+Hb+49Iuml3ge
OH+VxrNPsxgdBf7LfzEJp8eD89dO4N3PvVs3zsdeegwvnXup7eVTb9P4279m8Cu/AnzoQxo3CmnI
IK7NXMToM6NtL7322mt4/PHH6//0SnfI/M47sfcje8HsZbBmdE3998kk8DufpLEsyuDgQeDJJ4E/
+IPmAPB7J76Ht66/1TyghgXI10hy/zUt3gH1ib2QuAC2zOLs7NmmP/frv+VByM3iwAHg+98H/vAP
mwOrly+8jEPXD+nDWTsy/O0jf40D1w9ox+nxYDwxDh48jk4drb9ULgMf+A03XDyHgwd4/PznwGc+
A2REfL9/cn+7PtWiMwCgafzg6N+1f0clnDSNi4mLAND0N3keeOghoOLy4PWfszh4EPjv/x2Ynm58
fGx2DEduHDGE85XTL+HI1BHl97XgnMxMolgptn2/3/kdoOyg8fIPWZw+DXzta8DFi43Xr2Wu4eT0
yeYxNZL5a+dewYnpE7pwptgU4kwcB683k/lnPgOw8OD551iMjwN/8zfA8eON15NMEmOzzY4KpZLy
jqMazgPj/44zs2e04aw1qctOOyZSEzhwrXldP/44kGA8+KuvM5iYAF5+Gfh3UYLJlBhcTl6W/v4q
Nn/8yoE2Z6woojX65uSbTS9985vAlVkP/uxPWVy5Apw+Dfz4x43XK9UKYrmYIZznrh3D2/G3Ua42
93b27dvX+2QukCSAJgP9m78BRvbQCLkIKz76KBAIkN8L8vThp3HP9+5pVrYGMq8yBVxJX8HV9FVt
GGsTO54YBwAcvnG4/tLzzwNLVtPw8KR+9p/+E7B1K/C//3fj408eehL7vrMP//L2v2jHabOBdzpx
7sYpwzjFJPkv/wJQdhsolxNUkcPu3cADDwBf/rII51tPYu9ze/HssWe14wRQcbtw4spB3TgvJgnz
HbrRIMn/+A/g6lXAG6VBsQw2byak+XlRMP3UW09hz9/swVf/46uNFF8DzqrbjSOX39CPs+Z0xGR+
6hTwy18CQ6to2IsMVqwA/uRPgM9+tvHxZ448g9FnRvHZn322YZwacPI0jWOX9+NK6oounJeSJOcX
k/nVq2SNrt9Ow1lm0NcH/K//RQKOaq3q8J3j38HWp7fioz/6KHLFXAOnSqbD0zROXT2EyfSkthJG
qQQ4HLiau44KX2kKphIJ4BvfAHbeRYMGC78f+PrXCU5hl+aLZ17E2m+uxYPPP4jpnMi7a4h4z187
gQSTaHw/NWFZJHkGSTbZhJNhiM28+14afgcLlwt46ing058mz7MAgFfGX8GSv1yCu797d90W6x9W
ySAuTY2hXC23ZaudSvfIPH4Bm/o31SOmSoUo6COfbDRDKIp4xC9+sTG5U9kp/Nn7/gwffP6DzUat
NLFuNyiOw53L9mAyrbEwJ4rMN/VvwuEpQuY8D3zrW8AnP12rcdYwfP3rwBNPALnaupnKTeEv7/tL
PPqDR1EoFZrGVJKi04a9A7v0k3lyHJv7N+OtGw0yf+op4I/+CKBEDaavfhV49lkgVgsiYrkY/vK+
v8Tnfva5RmShgXwK9ipu79tuyOls7t/cRJJCBkaJ6sZf/CLw058C5883cH7tnq/hW4e+1ciSNODM
2IrYGliHq+mr2uq8IqezuX9zE0k+/TTw+78P2LwNfX7uc8CZM8CBAw2cX973Zfz0wk+xf3J/05hK
kgaHYWcEGS7TWC9acCYuYsvAlqaI96//GnjsMcDhb+D8xCdIb0fYmxDLx/D5vZ/HublzjdKHhkwn
ayvBwZUR8UQwldVQjBc5nS0DW3Dw+sG6E/jOd4APfhCgww2cv/EbwOAg8MIL5OM3sjfwR7v/CMVK
ET8d/yn5ZblMvJLcjiMAjJ1HJj2DdZF1uhzkZS6GDdENOD1zGkyJBGsvvADs3g2EhhsN0LvvBu64
oxFoXstcw0d2fATD/mH88/l/FgFRXqMllwMziavYNrhNO06N0jGZf/jDH8Zdd92Ft99+GytWrMBz
z0nUfmsk+ejWR+tk/vLLZBJ33tW8m2VkBFizBvi3fwN4nkcsF8NHRz6KYqWIbLHW0VMzaocDFfD4
zK5PGSKfD2/7cD0yf/NN4o3ve8DedNBj7VrgzjuBf67NYywXw4MbH0Sftw8z+RltOAHk7RX84a2f
0E0+rTjHxkgk+Zu/iabm2uAg8IEPAD/4QQPnvtX7sDq8umGcGnCmwOK3b3kYcSYOrqyhUy2Bs8pX
ceMG8ItfAB/9KJp2CwQCwCOPNIw6lovh9qW3Y1P/Jl1OZ66SwwPL74bP6cNsYVYXzoe3Poyx2TEw
JQbpNCmn/d7voWnHlcsFfOQj5DUB57bBbdg6uBXT+WnNOKfKSewd3IUVoRXaAg6R03lg/QNIsSlM
56bBccD//b/EOYpx2u3Axz/ejPOWvluwfXC7rvV5jZvFbdFtWBVapc2WRE5nz/I9iHqiOD93HtUq
8H/+TztOiiKOR8A5nZ/G6tBqbB/a3ojMBZxyO44ATHDT2BpYh/XR9ZhITajjrG1fvZQlxLplYEud
m55+Gviv/xVtTepWfa4KrcL2we2NeRd9f1mc7BRWugaxbXCbNpw6pGMyf/7553Hjxg1wHIfJyUl8
7GMfa3vRujykAAAgAElEQVQP73ZjPDGOR7Y9giM3joDneTz9NEmvpLr6H/oQadyl2BTcDje8Ti8G
fYONRagSUZyfOw/OSeFXV92HWC7WVpuSFCEyj1/AQ1sewtnZsyhWinj6abIAbTa0baP80IcI+VSq
FcwV5jDoG8SAd0CzscwV5pCzlfH+Fe8DBQppLq0Z53hiHO/f8H7MFeYwV5jDX/0VIR63ux3nI480
GqFT2SkM+4eb9amCkytzSPB53D18J5YGluJ69rpmnBeTF3HnijsRcocwnhjHt79NymnBINrmvpXM
23CqGArP85gqJ/Erg7uwMrRSH/kkL2LrwFZsHtiMY7Fj+N73gHvvJc3u1q10jzwC/MM/kOxSEqcG
kpzkZnF79FasCq3ClbSGCE2Ec310Pe5YdgcOXj+IH/4Q2LYN2LgRbfp86CESbLCscZyX2SnsCG/E
qrA+nJdSl7Ausg57lu/B/mv78YtfAH4/sGcP2vT54IOk9JZIiHB6BzFT0GbvAHChMIktgbW6cV5M
XMTayFrcteIuvDn5Jo4cAWZmSHmydWviPfcAb78NTEwQpzPkG8KQb6ihT+HMgtw12gDGchPY4FuB
1eHV2nDqkK6UWdIUB7/Lj039m+C0O3H2xlW8/notipQ46PHww8CPfgRcTU5hiX8JAGDAO4DZfC3S
UlmE5+PnUXE54S7z6Pf2a04Pi0475gpz2Ni3Eesi63D8xmm8/DLw4Q/X3tNiLL/6q8CrrwKXpmcR
oSNw2p26jOXc3DnwbjfoUlUX+fC1RbihbwN2Ld2Ft64fxksvAf/5P9fe02Is995LGjiXrnLIFXOI
eqLtOBVIcjwxjqrbhQjl0U2S44nxOvkcun4IL70E/NZvSePcs4dspzx1isdUTr/TieViYOxVrHAN
EKPWksaKjHp9dD12L9uNQ9cP4R//Efjt3669p2XeN20C+vuB1183RpJsmcV0JY2N/pX6nU7iYp0k
D1w70IyzhXyWLAFGR0n5ShanSjnoMhvDRt8q4nR06nNdZB3uXH4nDlw7gB/8gGQ0FIW2YCMQAO67
D3jppQbOIf+QLpwX8pNY512u2zkKTufO5Xdi/7X9+Id/IPq029E2704n4awXX2zWZ1tGppBBjGUv
YTU9pB2nDukKmU9XMtgQ3QAA2LVkF773iyPYswfw+WpvaJnc5cuBzZuBl38Zw5IAIXM9xhIvxFF2
OQCWxcrQSkxmtKWxcT6PNZE1sNvs2LV0F/7hjcNYuxYYGqq9p4V8wmHgPe8Bvv+TqSacWp1OvBBH
1e2q49Rq1DlbGT6XD0F3ELcvvR0vn3gLNhshGQBt+nS7ieP57g+mMeQfgo2y6cp04kwc1drVpXpw
ll1OzOZnsSK4AncsuwOvvn0IV6+SeqQUTpuNZDvfe5E0IvwuP8FZ0J7p8DQNiuN0O8fxxDjWRdZh
97LdeGPiIA4fJnVSKZwAic6//0IV0zmi06YITcO8g3bDzpUMReZrI2uxe9luHJg8iH/9V+D++0U4
W7LcRx8lpQHZTEcBJ1NiULBV4K3YDOMUnM4rr5CNA3I4H3mkgXPIP0RIsrXMoiBz1RxCcOl2OpeS
l+o4D147iJ/9TIRT4nDThz9McE7na/Pe6nRUcE6X0wjyLqwOr+69MosWmSolsKGPkPnI8Ah+cepk
Q2GA5OQ+/DDwszdJdAboI/O5wpwhkpwVOZ0dQzvw6tlT7ThbjPrhh4Gf/jImj1MhoiAkqR9ngs9j
fXQ9AGD74Ha8cX4MDzwgCggkFuFDDwH/9GqzPus1ZY3kI+DUaiwZisOq8CrYbXZsHdiKQxffxj33
iHbCycz7Sz+PYYl/CSiK0ufEmThpqjIMVgZX4mpGmz5ZB0A7aIToEDb2b8SJyYvYvZuUBQBI6vPh
h4GXfpqEz+UD7aB1lYMITk/dOWrVZ9XtQiwXw8rQSqyPrseFmatYvRoYHpbH+Ru/Abz8ShkJJoEB
74A+p8PEYfN4QXGcrvIFXyPJddF1WB1ejaup66AoUbAhcbLyAx8gZ0xiuWkSmevAWSgVwDkAZ7Gi
vxxUI/PlweWYyc/g8kRVNtgAgHe9C5icBK6lRJG54HQ0lAHnqjm4S9DudHRIV8j8WnGuTpJDvmGc
vzZLalKCSCzCe+4BTl2ONcosvoEG+WgwFr5GPpobTAyDqXKyTpKDvkFcmoo3k7kMzpOXpzDsa5SD
tNb65gpzgIc24HSydZz93n5cnU2oOsf3vAcYm4xh0GMg02HiAE2+ux6STPCFOs4+bx9uJBOq+ty1
C5jKxNDnJgylpwcRL8RBeby69Zmhig2cnj5MZyT02WLU69cDVCCGqEt/sBEvEJIEy2JVWHtjMW+v
YnlwOZx2J6KeKOIFdZz9/cCqzbMIOKKw2+y6cdq9PoJTR8RbdtlBgUKEjiBCR5AtpnHv/ZVGsCGx
Pj0eYNduFvliARE6oi9zLMRh9/p14+RpGtcz17EqvAoOmwNuyo9335tWDDbsdmDfPpCMzDdUx8kL
Vzgo4MyX8ig67XAUS/V513ViVUW6QuZXuZk6mbPJKKquBDZvFr1BYhFu2QIw9inQ5ZqxePWVBQSi
0EM+N4qJOk6KjSJbTuDOO5VxLlkC0P0x2BkJo9YaobEsVgRXaC4HTVfSWB8h5OOhokiyCbz3vco4
/X5g6YYYqLwESargnCvM1clHD0nOVXN1kgy5okhxiUZJQAanwwFs3BWDrWBMn3YRSWo16hQYrIuu
AwBE6ChyFXWnQ1HA1j0xOFgDZM40yGdlaKXmSDJLlbAuQnCG6TAYPo177hOdsJMgHwDYsTcGd6mB
U+uumzgTh0MgyVrEq7rjimVRsFexLroOFEXBbrPDVg7gXfeImvsyd7Psevc0PJVBUBRVD96qfFVT
huv0BQCWxdLAUm07rlgWRSeFYf8wXHbSsKTYKHbfHW/GKXE3y53vyaFS4eF3+eF1euG0O8lOOw3O
UcDpdXoRdAeb99J3KF0h8wk2Vjfq8VNRRJclmnsEEouQooD+NVNIXJWIJDWQT50kQys0k89kcbaO
8/zxKAKDiebDcTLGMrx+CqlrovJFXpRBqEZoPt0keaPUyCAunOiDKxxHICB6j4yxLN0YQ3ZKhiTV
yMcAzplqtk4+V85FQXkTWLZMHeeKzTHkpw3gLMRh9/l144zzhTrOuWthVJ0ZbNqsTpJrtsfAzhlw
OoU4nDWSXBFcgRvZG5J3mLTiTFNs3ekk4w6gGMDWnS0kKUE+63dMo5QkOPu8fUgySbLDSwtOXxBg
WYTpMGyUDSlW5SIdlkWWKtf1yTBAJRfFrbsTjfdIOHEAuGVXDJUMwemyuxBwBZBkkppI0u0NAgwD
u82OZYFl6nPPsmDsPNZG1gIg29i5VBTb72jBKTHvm2+PAflhUDUSG/INEVLW4Bzd/lB9TLPr5t1p
gJbT9VrthZNROEOJ5jfIGLWnP4arZ2TKLHLPwETNqEXko3Uf70wlg6WBpQCAc8eisPu14fQNx3Bt
rIGzyagVcM4V5uDwGiDJSgbLg8sBAKffigKeFpwyizC0bApTb8s4RxV9OmoRheActURos5UsVoZW
AgCOvhlC1ZlpJi0Zo46snML0RRmSVMLJxOH0EpyDvkFkuEz9IIgSzng1j9Xh1QCAN163w8UHkCmK
SFIG58DqGOITw+B5EinnijlygZKGDMJVM2q3w40+Tx+mcio7rlgWKbBYEybXYbz+OuABySKacErM
++DaGNLXh8nhTJsDEU+E9EE04BRIEoC2LIJlkbUVsSZCcL71FuBFFCWHCKeMHQ2sngY3N4x0TfX1
udeCU0SSmurmLIucvVLHefYs4Cz3wRVqwSkx74HhaSA3hKtX9eFMMAl4fGF9OHVIV8h8tppFxBMB
zwNnDkdRcUqQj4TSyp4pnD6gP/IhJGkkQssjTIcBACcPRlG0a8PJ+6Zw/sgwqlX9ZQGBJJcFl2Eq
O6W+J55lkeQLiHjITZXH9odQRFYTSVKBGK6ODYNl0Vzr00I+NZxBdxAuuwsJJiH7fgFnGiyinigA
4OABO7z2YPNeehnygT+GzI1hzM0BQXcQxUqRnJLUYdQ2yqYtK6vVzAWc+/cDQWcfITtBZMin5I7B
zg5jfBywUTb0e/tJVqYFZy3iBaBtjbIssrYy+r39dZwROto8DzI4s3wMUecwjtRu0qg3FzVE5u6A
iHy01KNZFjlbBQPegTrOfl+LPmXWZ5yLYdA3hNdfJz/XS0IacNL+iG6cjJ2vB5n79wNDgWg7Tgl9
TudjGPQO1++U0YPTE2jgXB1ebWoTtCtkXnTaQDtoXL0KVPNRZMraIslEaQrZqSW4fr2lxivcQS0j
4hragHcAuWJO/cg0y2KukkPEE0E6DVx5O4R8WSKSlMJZjCHsWIIzZ2r74QuzhCTVcBbicHmJUbvs
Lgz4BtT3xNcaixE6glIJOHrEjqA72Jz+yhj1HBvD2sFhHDgA+Fw+UBSFfCmvinOuMAeXrxH5rAiu
0BT5JEHSc54nx9/7fdrIZzofw7ZVS/DLX6K+o2U2P6sJp1uEUytJpikOEZo4x/37gaFgC04Z8onl
Y9i6ahjCRaB1R65h3mlfRD+ZU6UmnEvCEuQjhTMXw6YVBnAycXhEJLkitALXMtdUcebtlSacy/sk
9Ckx77FcDBuWNHDWt/1pwOkVkeTy4HL1e09YFoy9irA7XMe5cqBP4/qcxtqhIYM4++pjLvUvxY2c
efezdIXM3b4QAKKwu3aGkOVaIkkJpbFlFoVSAe+6LYrXXyfli7nCHGmIKHhAnueRYBJw1SIfiqKw
JLBElSSrTAGMg4fH4cGhQ8CuUUKSTZGkzOTGcjG8a3SYpL5OD9x2N7maVkMGIU4Ph/3DzUeDpaSW
QUQ8EZw8CaxaBfR5tZHPVG4Kv3LrcFPkoymSLMRBi3AO+YfIThwVnMma07lS4/1BqchHhnx2bx3G
G280cGqNJMXk0+/tJ81wFZxpnkXEE0EqBVy5AiyLaief2zctwZtv6sTZQj593j5NmU6GKiJMh1Eq
AceOAWuGtJFPLBfD6Ibh+vXSunD6o/Uxo54okmxSFWeOKtUz8QMHgHVLJZy4xLxP56exY50xnL5g
gyQjdEQTzry9Ws9wDxwANq7U6MRzMWxb1YxzOqctMveLcXoipCdgknSFzOlAw/vddacESUooLZaL
Ycg3hN13UDh8mDRE/C4/iUAVaqdpLg2Pw1Pf1QCQyVU7Kl9hCnD5gqAoCvv3k3tXoh71yc1yWfDg
8Su3BXC4dtFivW6u4nSSbBK0v5HGhumwaoOpwhTA2InTOXBAAWeLUQv33Lxn13Adpz7yiTbhVF2E
tcZixBOp67ONtBTIZ+/IMN56q4FztqCtfOER4YzQEfWGHcMgCRYROkKc+C4J56iA865bm3Fq0edc
YQ5ekVFrmXehbBXxRHDiBLm/SHMGkYthz1aCk+dbcKr0SvwGSDJrKyNCRzAxQQ6CrR7sa3aqCs5x
18YhnDhBDoQPerWXL/zBAd36zNdwJpNk7/imVVHNOLetITXzTKZWtipo0CcTRyA4UJ8jTetTh3SF
zD3+Rsp1553EI6mRTyxHTn/efjvqxlI/0q8wufFCnNQVRWNqIZ8qUyBRsginFpIUTtbdcQclbdQK
Tsfr9LY5HVUyL+Th9AWUnY4E+aTYFDwOD+66w9OkTzWcVb6KJJNsIkmtTidvK8Pn9OlyjpVqBbOF
WbxvzyCOHSPXXeghH18LSWpxOgk0Ox0tOIGG05mYINcQ6CPJfn1Op9YAjdAqOGXI59a1w6hUgOvX
ddR4mTgCIf0kmaE4ZX0qOMe1g8NYvpzcTFkvX2ghSRHOiEeH0/E0nPiATyLYkMkgloWGsWMHcOSI
vqAoGBrUh1OHdIXMvYEoGIbcD3LbbdomdypL7mXZtQs4erTFqBVqU3OFOfR5+9rIXG0R8iwD2h9B
tQocPKh9EU7lCM7t28lDC/J5bZM7V5gz5HQqTL6pbKWVfIS7TtasIeq7cUObPlNsCn6XX7fTKRdy
cHpVnI4E+cSZOMJ0GAN9TixZQm6D1KLPKl8lWAMtES+njLPKFJC3VZqcjpYMolQpIc2mMRzsw/bt
ZI3Wrx4wQJJayCfJM3WS3LOH6LMpklQgn+HAUD0w0tMADYaGdJN5CqQHoZg5yjjHYf9wHaee8lrI
AM4MVTTsHMU461sTNfRKQuHh5kxnvpVZvIEojh8n9614vdomdzo/jUHfIPr6gIEBcluZlsmNM3H0
efqaxtQyuRTLwRuIYHwcCIXIfSyacNbu5nC5yAMrjh1rNEGVJjdeEOHU6XRc/hDm5oC5OXJEWovT
ERYgRRGHqtVY4oW4tHNUIclKIQ+XPwiWJVHWrl36cAJoGLVXm9MJuAP1E4t1nCr6LBWycHh8ACgc
OkTujYnSUSRY5XmfLcyi39sPu83eTj4KOCvVCtJsWndZoMoUkLWVEHAFcPAgIfM+T58q+Qi9pwgd
0YUTqEWS4SF95MOSQ1gRDyHz3bu1R+aCLYlxaiJJpp0k9WQQBw7odI6105+6nQ4TR0RwOjw/PyPz
oC+Ko0eJQQPaPGCKTdWbE4LSBnwDmFVJu6TKLBGP+uRSHAevnzid0VEZnBKLMMkm6517PZMbZ9pJ
MkJHVEkSDAuPL4zjx8nd7zabNn0mmST5ezWchw9riySbnKOeshVbgMsXwtmzwLp1RHVaSLI+f9Cp
TwnnqIV8yoUcHD4/rl4lHx0erhm1yha1egaIFn2q4BScjkPkdLSQTzGfhd3jQyZDYXqaXHmrZX0K
GSBFUdL6lLEjwemERGUBreW1LFWCxxbA6dNkjfZ5JWrmLfOeL+ZRrpYRcAUMZRAREZlrLa8JZatj
x4ReiYRzlMl0xE5nyD/UKFuplNf6AoPk+sVicX5G5hEvIXM9JJnm0vVtQ+JFGE9NEWXYpKFLllnc
6mmsnSvBH+rHiRPAjh0yOCUmN8Wm6nvT9RhLU5lFlEGoTi7HwhuMtuNUIckUm0LIHdKNU9I5aiAf
nmFA+0PK+pSIfDrRp5HyWqVAGt+Cc9SDs9WJN5GPnD4NOsdSIQuHz4+TJ8n95Xa79vUp4LztNuJ0
BrzanE7QHWzLdNTsqJjPwObx4sIFCsuWkett9QRvFEVhZAQ4dw4IOrQ5nQyXQbiFzDVlOlQJ+WQA
lQp5+HkbToeDHEUXXc/NlllU+Sq8Ti82bABSKaCUDSNfzKPC5FUj86gnWv/+XqcX5WpZ28NeNEh3
yJyO4OhRYOdO8rNekhQW4aB3EMl0TFVhussXlQrs5QoC/j5lo5bAmebSTTh1R5IiR6ZlEdq4Yj2D
0Es+rSQ54FXfv22UJMGy8Pgj6vrkmhey2OmMjpKTeWGXesPO0LyDZBBuX1jdiUvgFPS5cSMpeTmK
A6pb1GTLVqpOJwent93ptEW8CjiHhgi5ZqcNZo4aMtxSPgu716d73sV25PGQ8uGls0FwFU6RJJNs
kjgdV43sy2WE6BCyxaziFQlcPgN4PDh5woYdOwhnh+kw0my6/WyJCKtYnzYbsfkjh22IeqJgcilZ
nOVqGRkuQxxrTacURZlaaukKmfsdEZw/D9x6K/k52npyTYXMd+4ETp4EInQ/0ulp1W1fUo1FxUXI
cSi67Ih4JCJeHUa9eTN51iZd7UciO0P2gck8+dwo+WjKINzudpxcA+eSJbWvkuoj+8Wt6EFwXL1X
IsbZVL5wuyUjNAGn10tKNDNXoiRyVetBSJCPqqEwDDyBsDr5KOC02YjjmRiLEr0o4ZTQpxaSrDAF
uP1B9fWpgBMg5DN23A+uwqGqs2wVcoeQ4TKKN/0JjW8xzggdQZpNNz7ncpHHL1Yb47TiJBsfKITc
IZQKOfV5F31/G2VDwBUgZz1kpJjPwO7x4cSJxrw7bA4E3AHFU8ppNi2Bk9hEMZ9VzHRC7hDsNntT
AGdmqaUrZJ6diWDt2sYdNHpJMhAgD6zIzUbAZlOq25RaI15Vo2ZZlJx2OMoR5HLkII4sTgVjsduB
7duBmathMPmal5Z56oiU01E1ap6HvVSGx9OPCxdIw1XAqVbjbV2Eo6PA9fEwWbg6I14tJGnjivAF
+vSTD5dqwzlxLtw4X6CAU7cTBwCOg8cfacLZVjuVcTohOtSE8/wpP/KlPHidkXnIHUKKTSned8Mz
DNy+UJPTiXhaSFIjzhMnKATdQVSYnHI5yNtHSprlMslebXb4XX5FkqwwOThbylZ2mx0Bd6AxFxTV
FnC0kvnoKHD8OJlDRTIX1iega42W8lk4vP6mYANQDzikcB47RnCWC1nFcmWr09GCU490hcxjlyP1
Egugn8wBorTYRBisQioDyO8zVzRqlgXnpJCcitRTLqM4R0aAyQshglPN6Uik24oTWyyiYrehkOrD
+vUNNRjFeWkshHQhCRSLss8tNFoWsHMllKr98PnIQ6UBmQaTitMZGQHOnwwiW8wSktRSi27JIJRI
kmI5ONxRxGLABnL7cf1zdZLUEPGOjAAnT9gQdAdRZQrKtf0W5+i0O0E7aOSKOVmcYBm4fRGcPUsC
BoBEkn6XH2m2FkkKBCn6vlI4BZKsFArqkTlFNa0ntbmvMgW4fc0ZBCCTPSqQZBNOJq+bJNVwVpgc
XLUMQnA6kjhb5l5cBmzFWS7Il4Nknc58i8yvnNdA5ioRxcgIMHE+BLaQUS2z6CYfljxtZnoiomti
BZytTmf8tDano7vMwrIoOm2IX4s0GYqWLWpSOMeOhcDk0+Ddbl0ZhCpJ8jycpQqSiYEmnJIkqcGJ
nzhmh8/p092DcNldcNld5P4ZGbEXS8jm++tNRaBBkvUIVK7G65aO0HhW/v7tegbhdhMnWtOhWoRG
sRxKlSiWLxc9AQktdXO7nZT1SqX660qRZJVVIHPGGElWGQZwkCsHli9vxqmHJG+9lfRLgu4QqgZJ
UpHMC3k4vEFMTIiegAR1W2rV54YNwPQ04LOHUWEVcC6UyPzCyUh9JwvQGUmWCvJ1KcBgLZplwdp5
XDkfVo4mZCLJVk89djyEYj4LXmdtX3WXSC2DmLrc7HSE8ozuSPK4E2HQuvVJO2hQoMCUZa6XLZdR
pYDpG/1NOCVJUsqJi/S5Ywfpl4TdIUKoamWBljHV5t7OlRBPNOMEWtJtDfrctInc6xJwhpTLLIwo
4nW5NEe8No5DKhdtWp8CTqU12up0li0jpWoPFdaGs2VM1UiSZVHgmjNcQIYkRQ6yNSPz+4kzsBfD
qHIaylbCmBp3hlUZBlw1hI0bm5NStaZy67wLpdVSLkQysoUemZ87HtGVcgHS6faZw2GU8vJ1KYDc
GSze/gNoXID2KsZPt5Bk7S6KegSq0rADyLax8XM0vFUbeXSdDpy0g0aVr4Ittx+oEHCyDmBirFmf
DpsDPpdPF0muWQOk00AfFSDPIZWReKG2napl+6hifb+WQVwfDyuTjwZ9RiLk0WdBhEmnUa6hLETm
wpi1OVMjSWepgms3BiTJvI7T4SAMKNqi1orT5SKE7qyEQWlp1AK6HLmNK2F2rt3pqJWuWjNciiKB
UbUQUt2SKkU+6k6niGQ2quwcpXC29EoAYvPFTFjxSUNyJKmGk2cZZBmV9SmBU7zrRoyzEA+DZ1T0
uRAi8/6wB2HR9xe+QJ0kWxTGlTmUq2V4HI2ndgwNAbSThrtYRUWGfITPeZ3epjG9Ti9K1ZL8fk6W
3KA2MRbBli2NXzvtTngcHvJIKAmcQLtRezzA2rVApOpHxWmX1Un9c6IxKYpSXoQsuYP5wslIxyRp
s5GoN1gKoOKSJkjhcxFPRF/EW3M6l85GlElSgz4BYizuvB8Vt1MdZ0upQdGRl8uwVXlcvjigrE+Z
hp2YJAFCkpV8GDauqLirQdj33dYvUQg4HMUyrt3oVycflVo0QPTJpZWdTpJN1g/t6enr2Lgipuf6
dJOkFM7RUSA3F1bcHZRkk/W76HWRJMsimW5fn2rNbzmcyVgYUMggEmwCUVoCp5bLyzRKV8h8ZEdz
PdZld4F20M0kKU65at6Paqnjjo5QCFS9KLukSbLpcxIkKXdzYjGfBWPnsX6Vr20u2shHhLNUKYEt
s/C7/E2fGR0FfEU/SjIkWa6WG59rWdSKERpL7or22ML1pqIsztZMRyKiGB0FXIUAygpkXv+cXjK3
A8mpCNavV8Ap1I0VtqgBhHzsqQAqTmWnU/+c1giN48A5KFx9O1pvKgqiJeKVjCTjQVCVqmwGYQgn
SAZx4eKg/ohXBmd2VqfT0biN0l4sYXJSQwah0ekkpkIEp0zEK+sc3eoZxNSsRNmKVr45sTXDFXDO
XFF2OuIT7fO6zCLsLxeLEvlITSxAlOYtelGUiXjlDAVQNpZcZg5Fp6PN6Qg45WqnaS6NEB1qczoj
I4Az70NJBmeaFX1OB85SzemMbvW3vabkdCrVCvLFPALuQNNnRkYAe9qHsgxJVqoV5Io5BN3BBjnV
Sg2Ki7BWttqyJlJvKopx1vUpRLzFYv11OadTnfMrOh1DJMmyYB0UhkLh5meoQqZ2qrDfWMDJ3Kjh
lGkoy+FUJMlqFa4yD6Yw2PwMVajvZJKLJOPXQ7BzJUXykdSnCkk6imVcmxpofmA7yHpR02crSQo7
2NScjm59gpD51WsaMh0N3LR9OzB9NQQbawznvIrMWxUGkMnVS+ajo4Az5wEnY9NqZC5HPoVsAkWb
uy2aAIw7HXvGg6JTn0Gr4cxmZlF0SDudJn221I0zXAYBdwA2qnm6R0aAStyDolN6GWS4DAIu0ec0
kmQpnwPj4LFzW6DttbbFKxqzyleR4TLEebTg5Ga8KMlkZG2f01oWYFkwDh4jGyNtL7V9Pw0keeut
QP6GXxZn2+e04uQ4sA5g67pom49ou89Hg9O55RYgOxuCvVyR3ZJqCCcAZ7GCoaHBtmHbnimgQZ9D
Q6QHYSuW9TsdFZx2rgyHsx/RaPPvhVOgenB6PMBwOAyKLSlmEJJkPt8ic0kyF3tOlaaNICMjgD3r
AZYTQGQAACAASURBVKuVzEWnSpXKF0w2AQZuSZxN5RkNhiLg5JM0WIcGMm85DadEkvlMHJzNJel0
mj7ncJCieC2KlnM6W7cCSHi14QQ0k3k2MwPObsfoSPu4bZ8TpdtZLguf00dOyYlkxQrAlfeClbmP
J1fMwev0wmFztOFUitBK+ay802ldL6IxeZ4nWVlLJBkMAoMOL7jWdKQmPM83r23xVQ5KEW+tBzGy
SaPTUSkLOBzA2qgfZbtN9o4jQxEvz8Nd5rHhlmFDOKXW6LplITiLFW1k3nKyUi2DWLl6sO33ajil
MkcA2LQ6DIcFTkePdEzmr7zyCjZt2oQNGzbga1/7muR71q5t/12T0jTUzwBytNtRcCFbld7fbLTM
Usgmka/QsmRe95wSOFsNBQD6+gB/hUamrAFnS3NNyVjy2TgYSJN52+dEWOVwulxAv4tGRuYKCyUy
V8KZy8yBtTllMzI5Y5Gbd4oCVgY8kNstruh0FEgym5kFZ7dj52i7GSgZdb6Uh9vuhtPe3pBdF/WA
tUk7x3wpD7fDDZfd1Tamkj7LhRxYO3DHjmDba0rOsc15iGTzEi84u7T5t31Oa6O2VELJBuza1qeO
UyOZb1kTgqtU0R3xqjWUXaUqNtyigcylbF5Cnzs2huEoaXQ6rWWWXojMK5UKPvWpT+GVV17B2bNn
8fzzz2NsbKztfVKBSpOyNUa8NhvQ53BjhtFAki2n4ZTIPD6dRpHytDUVgRYjczrJUzIqlfa/1yJD
bjfiRQ04Ac2eOhVPguHptqYiIEFaGkgSAJb73UhXDOBUuIkykyJOp7WpCCgbtRLONREaOZkzSkb1
mU3PgrHZZZ24onOUMGgAuGWQRl6ayw3jzKRnwDpsGB3R53SYMgO7zQ7a0U4w25fTYO3SQNkyud+k
/jmNWygrhTxYh36nA8hHvKPr/eAB0xvKdJnHyIh5GcSurSG4y1X9ZN4ru1kOHTqE9evXY/Xq1XA6
nXj00Ufx4x//WNNnmxaFhrqUIP0uJ6YLZcnXmpyAzdZ2KENOaXNTadg8XsnXwm7RgxhajjYr4Rz2
uhAvSl9I1PY50S2HSpHkjaspVJ20rHOUW4RyhgIAK4IupCsacWo0lsmJBEp2d1tTURanBn2u6Xcj
C/1ORynivXGNZBDik4qKODU4nc3LaBRkrEoRpwJJzs3MgrXZ25qKsjg16HPHag9YmdK+0XlPJqfB
2ilZp9MUgYrGZMssKtWKpNO5Y5N8GbDtcxrnvVIk+tlzm3kZxJ07w6DLPHiXvgzC7/KjWCmiWClK
fk6PyG8P0CDXr1/HihUr6j8vX74cBw8ebHvf448/Xv//ffv2Yd++fURpAkmKo2iKIgcI3NKLcJC2
YyYrTeYprqWcICiNphWNJZvIwuVv3yECkMm9MXejfUyvV9FYlgYcSFyTrl+0lT1aFuHF5EXJz81O
pRDxyjgdg0a9OuJCqipN5sJuHTmccvq8fiWJYZm0uM2ptjgduYh3w4ALOcpcp3NpPIHlDrfkxhNJ
nDV9ymWOALBlmRt5W1VYyqbgPDc2i1V2h2Sv0qjT2bHaDcbOo1QiCacizpZrmuWCovPnZrDcbseq
do5UXJ+CPlt3hQHA9hVusA4epSQ5QCaWts9pzHSuXp3GgANYv67d6fhdfrBlFqVKiZTRRDhLFXJW
xef0tX1u5SANqgqcuwpsuqX5tWKl2Pw5miZ3AKCxbTrJJDF2eAyvvfaaJGYt0hGZSylfSsRkLkiY
DuNC4gL5wWarP30DbjdSbApL+5dKjjXodeDsXEHytRSbwpL+JY1ftCzCK+krkp9j0lmEh6RJRCmi
UIp4lwccOFAuSb7WdtpNo1Hn4hkM+XWQuQajXhl14BjKqFTay2GS5CM+Li2X6UynsNTjkXxNrXwh
h3NtvxOn7RXkcs13kwifk3M6SrXT61cTWKbgdIzoc0XQiQvOKq5fR1vE37b9rlWfMjgvjcexzCV9
YKrtcyJ9Sm33E2TQ7caEs4qxsfatw0YznbOnZzHokA73A+4ACqUCytUyaVRr1GcAdkw5gHPHy3jf
3c10JYmzQLjB4/DUT1O3RvxHDk9jn8MGv0QGJT64N+AbIPpMke8rtxUZAKhiEYwD2H88g023DDS9
puR0gEapRQh0BfnSl74kqRM56ajMsmzZMkxOTtZ/npycxHKpnFVClEhSaXIHaTtSfLH1TIz057Ru
pSvkERlsr/NJfk4jzgHajoKzhJmZ9tfaIjuNEQWTycIXkc4glLb8KeGMOh0o0iVcuND+muHdLPE0
XAFznU4QDhTpMk6e1IdTsXwRS8Hmla5xGmnUAkCAd4BzlXH8uE6cSpnOZJxchiYhITd5EIPUvTxK
OH0VG1hnFUeOtmc7Spmjz+kDV+YkywIXx2dRlnE6NorcKCl15YRSUGTjiuAcNhw41n7gT0mfSqep
z56ZQVHG6QAta1SjPsGy4Bw2HD7V/vfavl8rmZvUBO2IzG+77TZcuHABExMTKBaLeOGFF/Dggw9q
+mybsWiM0Hw8BT7A4fTp9teMNJjSacBRySM6JE3mkrtENJQvvFU7Kv6SfqOWIZ9yGaiyOYQGJArR
MB7x+io2FD0KON36SZLNZuGLtqeikjg1Gou3agfn0qhPjU9vyiZScAWkM4gQHUKaTUvey6Ooz6oD
jLOMo0fb6/tK8+53+euRa6vEp5OgPNJk3nbHuEZ92ktllBx2vHWy/W5yoyQ5dS2heM9P0+c06hMc
h6LTjiNn2v+eEk5Afg/35UuzKCmcJjZK5iWHDSff1ud06jhNaIJ2ROYOhwNPPvkk7r//fmzZsgWP
PPIINkt1aSREzajlaqd0GagGOUORj9TEnjwJ+B0MPEHpSVLFKZPGespAycvqximXbr/9NuBz5OEN
aSRzrTgrNrA0h2PH9ONsOilXk1gMcFJZeMPyPYgUm2q+l0fsHGV6JZ6KDQVXEUePtZNk682A4vJF
0B2UfIQYwwBlNgNPWDqDcNgc8Dg9jTvGNerTXiyh6LTj8Kn2u8mV9GmjbAjRoTaSrFaBbFLe6QAS
5KMh2ADLouxy4thZ/eQT9UQl1+jcTAKUVyOZa7R3gtOB0+MGSFLmdOWNa3OoKtzzY5TMy24Hzk0Y
cDq9EJkDwAMPPIDz589jfHwcX/jCFzR/zmjDzl0Gil7GUMQrNbEnTgAeGwvaL0/mRsoX7jLAulnd
JBn1RGVx+l0FuP3ytX05klRKY+kKBcah3zmG6TCyXLbtEWInTgAhOgeXT9rpCHeMF0qFtjGVGqDO
Yhklhw1HT7X3S5Rw2m32+pN8xHLmDBDxZeDwSTsd4TtKkqTEDX91YVnwLjeOj0kYtUKvBJAmyYkJ
IECn4fDrIHONJFmlnThzMYXWa+m1kE+rI08mAZSSsPuky1aSODU6HZ52YiKWar1S3pDTKZWAdCIB
6HE6IpxyThwch6rbgUI1hbm5dpxyPR2gRyLzTkQpklTaLeAuV8HQjCRJKtWi5aKJ48cBusrB64+2
vaaKU4Ek3WUeOYexyLzpUWAinB6KAe2TIeXaHeP163M1Oh1HsQzWCRw9yeoyauFRYE1Hn2s4fc48
XF7pspXwHeuLV2u6XduVNHYpLX72gipOQJp8jh8Hgp4cHF5lMq/j1Lg+wbKgPG7M5VJC30wzzrZ7
QWo4I4EMbB7pspWAU6p80ZaxtOAE7YYrlMKVln0BajVeKZwnTgADfSlQMo3vNpw6Il7e7cLw6hTO
nGl+SUv5ohXnuXNAfyQJKFxPLatPlXmvuF1Yti7VZvPzJjI3KkYbds5iFVlbHidPNl22V/+c0pa/
FJuSjCSd5SJ8QYn9VGjuiuvB6ShVUHCUMTFZRL7l6KIaSTY9CkyMs8LCE2g/0i2I3BUJSjgploXN
40HVlcLUVPNrbUbdcqe5nFHTFCObQQAGjZrjQHk8GFqVwvnzzS9pitBaIp8TJwCvQz6DMIyTZQEP
jTVbUm3NWiPkc+IEEKQzcHg1krkOnJTbjdUb9ZOPnD4j/jRstHTZSsApdVBQzenwbjeWr5fAKZXp
iK7wkMM5GE1C7nCPgNOQ03G5MLwq3RZoKvV0gAUQmbd1xWsesFQpgatI7+UESE0yQxXRN1DG+Hjj
95LX0Yomou0BDiBNxdNjJbjKFXj80iRZvz5X/JxFzSTpxYbtaZw61fya0QjNWS7CG5DOIADjEa+N
9mLjDmNGLYmzwoCW0aeA04ix2DwerN9mHk43X4DLJ+90mpq8Ohp2FO3Bqls0GLVGnB57Dg6vDqej
pXzBcQDtwdK1+nFKOZ3jx4GAHqejQ5+gaQysaMeplIkD8hlZ2J+CTS2D4CTWp0p5DbQb4SUy61Nm
IwGwAMi8jSRrXzDFphB0B2X3sFMcB7vXh6270k1Kk9wDqmIs588DS1an4Ks69KWHHCd7rWxdWBYO
r7+NJMvVMvKlvKzTEXCKJzcWA4qVEpylsmxtXxKnltppTZ9rN3du1AwDXL4M2IscvAoZhNHaqd3j
w4oNnZNktUoa3/YKA9rsDIJlYfd4sWRNu1GrkY9cJOnk83D55MtWbaepdTjH/uUGI3OmHaeHyqqW
rSRJUgPO0JA0TrlMHCB3k0tlOj63jrKVjswRtAe+PnPKLN/+tiw8WblpZA5IK63+wFs5YVk4fQFs
2NZs1JKKVjHqY8eATaNJ+Cp21bSrtXaaZJMI0aG2a2XFOF2eANZsasYpXNXa9DkNOLffloK/6pS9
dkDA2arPcrWMLJeVb9ywLJzeQFsaK3kdrQrOkyeBTVvKcBTLhiLzJJNUNGqH14+hlQaMpcXpXLoE
hMMAxTGyGZkiTlYFp8eH6NJUx04nHgcSCcBWKsCtkEHI1faFNSqH0+b1IThoECfbwFksAmNjgL2a
g9Og01HESXvgiaRw4kRzaVVvOYjniS25qQzsBstWSnZEeTyweVK4fLl+dkkTTqnI/C/+QhaerNxU
Mm+qm9citKZnD0oJy8LtDWFVS61PlsxbamhiYzl6FFizJQlvxaa7hhYvqDsdly+IpWubcUo2UVSM
+uhRYMOtSfir6k6nNeIVCLL1WlkxTqfXj4GVzUYteR2tBpxbd6Xg5x2KaWzT/t9aul2ulpHhMo2n
xkjh9PgRqZGk0Kzleb7+sA8lnOLI5+hRYHRnBXaupM/p1DIIxblnWdi9fnijpLYveu6Gbqdz/Di5
w59ndGQQovKFGk4H7QPlIY3auOi5EXpxnjlDbjTlWeUMwrA+PT6wSCESIY5YM86WMsvkJLmuiS/m
4FTIINrKazWcCSbReI6nFE7ai2wpjU2b0HQORm9knskA16/LwpOVnovM60+tlxOWhdsfxJI1zeRj
lCSXrk3CU6EUSVIqopgrzCk7HY6Dyx9E37IUTp9uPAtY0ulIPCy5FefqTSl4VTIIKZxaMh2XPwRv
lDRAMxkFnCqRz9GjwLptSQSqDt3OMcEklJ0Ox8HpC6LqTMHtJoYJkLvMaQfduMtcBqc4kjx6FNg8
mkKAd6rWTlsj3nK1jGwxq5huO70BFKpprF2L+g6M+rWySmUBCX2O7KzAxhUNldcUbYnj4PT6keZS
2LGDlB8EkSSf1sZii3PcuZM88d5I2UrRljgODq8fKTaF0VEoB3AanPjOnUClkINTZbeVbn2yLBxe
HxJMAiMjUK4aqETmx49LP51NTXqOzONMXN77AQDHweOPwBFIolQi9WRAf5mlWiVK61+RBF2GbvLR
4nRofxgskli6lBz6MYITIItwydokvCpORw6nmj5pXxhpLolt2xpGbbRstfKWJHxayLyldqol06H9
ISTZJEZHG8ZiVJ/rtqYQqDoNOx2l8hrtDyFeiGNkpEE+TJmBw+aA2yHaEqcB56YdaQR4l77yGseh
VCkhV8wploPc/hDiTLxJn4D+ctDRo8DIaBUUy6mWg4yQpMsXwlxhTp0kJXaJtOLcuROoMAW4/SaT
OcfB5QvWcepxOq2RuYBTr/QOmdfSQy1llkBoAImWRajXqC9fJk+GqTiTcJfk7yEWcDaVBThO3emw
LAKBfswV5rThFEc+osZNIkFSYG80CbqsTuatu1m0OB1/oK+OU1iEWvQpNpZiETh7FuhfbqBsxXGa
cPoCfZgtzDYZi16cPE+MZfmGJPy8DjLXoU+fP4rZwmybPtvqwhoysjWbkwjqwSlyOlFPVNHpeANR
zOab9SlswW26nEqlfHH0KLDx1jSCvI6ejmj3Wr6UV6yZe/zhNpxAJ06HhdtAr0TN6bh94TY7ksQp
PPe2VisMuAL1mxoFnPOOzCXLF4y6sYSDQ22TK9mcUDDqo0dJPTLJJOHUQOatkaQWow6FhgyRj3gR
Hj9OHruXYpNwl3lDtX015xgKDWImP9MU+UgeiFLAefYssGYNwCAJrwanozuDYFkEgv2Yyc80GYtW
nIIzvnaNPOfA7lNvfEuWrTRkEL5gf3196g02BJyZDMEaWZqE30AGodfp6MZZCxrKZdL4Xr4hiSDc
2oMiUSau7nQibc6RK3MoVUvwOkXOQyriZZP1U9FHjwIbtmW0lddacBYrRRRKBcUGKO0LIc2lsW17
BadO1Z9h065Timp61kL9GtyaTuclmUvVJBXJh+cBjkMkNIyZwkzzIpTaAypxyEX4e8eOEYUl2aTi
MwYB+Vq0Ws08HB6WjND0GIswsUk2CXdJJ5lrjHjNcDp1nEwStIZyUGsDVBUnxyEYGjRMkm04WYsy
CI5DIDhQ16ewA0Nvg/7ECfLU90wxCb9K2UpqP7wWnP6a09myhTQWGUZfpsPzPM6fB5YuBSpOA2Ur
jfr0+KPIclksWVZCoQDMzDSceNNW5JYHmbvsLrjtbuSKOUxNEe709SUR4mlFnF6nF6Uqubu8nonn
SV1f9tpvlmyhDNNhlJxxDA8DFy6Qrcht51+kdFortRQKZC62bpVXiZzcdDLXNbmlEuBwYCA4LBmZ
GzHqdD4BW6XafkO/Ek6NkU80srQp4uV5tD9AQyPO5P9v78qj26rO/E+7vNvyIstbFsdr4tgOIYES
IBAMCRBKCHSAaenQZXoG6DpDKZ0pk8zpBGimp4UOpaeUUspMW0oLAxSSEiABQkgDCdkTx9m9yKu8
aLcsvfnj6klP0tPTe0/vKe/F+s7hkMj29S/fvd/vW+537/WNw8DxxmAynCk3QP1+FJcQfS5eTI47
T08LJx/aOU74JoQ7HZ4btbRzrK8npafx8TSdjkx7JUXFxOmUlZFS3pkzwkmSGWzkBXUkMBGIM1Wm
k1tggSfggUY/jcZGslnLWg6Kw0m/Y+qadsXoM5XTYT78IESf2pyc8CZ2dB+CVZ86HUm7GPc90IFR
ZH36x1EIIyfOyBkY/yQZU6vF6NRgSjuC2Yyy3NisjO60SnACLHM/4SOnhltawPoQSSpRFpmn2gD1
kfs5yvPKMeweRlMTaeFxOkl7kyUn7nRkEqOmKOCTT4BLLgFcrjEETYbEZ2HicCakhzzSbUtxFUbc
I7DZyBrr7yftTQntdxw1yY8/JjjHvePk9e8ULX+Cu258PliKbRh2DyM3F5gzh/QMs/Z8c2QQH38c
JR9jirKVWJwlRcTpaLWk9LR/P8HJtxZNUVQMTj5kHj/vfHDm5Vvgm/HBP+OPkA/rQxEsJGnQGeAJ
ePDJJ1GSTNVtVWAqgHvaTW6GFJCRaXJyUJpbGrO5yKfbCojO/d69UX2map2NIUkBZE7b/Ig7muUm
PcCTxJYiOL3jKTMIIJGbxsft/HDmlsdkuUJw0vrs7OSEllSUVzNPsckAkwkVeRUY8YxAryfpyMGD
wKBrELZ8W+z3JyHznh4gL4+kh54pR9KL/2lJlkEkNeqZGYCiUFFESBJAxFgGXYOozK/khXNkBBgZ
AVpbgXGvAzqOV8ppnGzkk2oRlpZUY8QzAoqiIsYy6B6ENc/KiZM2FK+XwqFDwNKlIjMInuSTW2DB
TGgGnoAnYixD7qGUOOnWRZffg927gcsvD5etUuxB0NfnhqhQtHzBY09Hk5NDIjRGPXrYPYyKvLgX
w+NwAtG537WL4JzwTSAnxR6EVqNFgamAXFUhhCRNJkI+jCyXdV3TjynPRO9ap3F+9FFYn97xlK2z
AGPu9XogGIRjapg/Tk804h3zjLGfSUhiSxGcvtQZRAzO8JjjEykic4bTYW6C0t1PqXDSZy9onGJE
OZE5n24WhvejSZI2FrvLzpskaUMBAK9rHBTHDWrJcKZqU4LZjPL8ighJ0sZid9phK+B2OnS6/dFH
FJYtI6/quZxjCBn0KTOIBH3y6LrJKyyFBhq4A+6IsfDBadabodPo8OHHHrS0EAcZySA4jKXITDaK
QlRIUDlIk5OTEKHZXfaUThwgc//JUQeKigCbjeA0TnNnEDEPP/DNyOi5D2eP9LwPuAZ44zzZ78DY
GEm3+TgdgLH/xNRnDs+Il+F0BpwDqCpgebKRZY3aJxw4fDjqxFNlEDTOCd9E5HH0ickhUZG5EJxj
nvGoE/eOIy9FBkHjZO7rTPLBGecciT7t/HCGI3NVkzkzkqR83khLFaswDGXUM4oQFRJEPjRJ7vqI
iiFzjTl56QJgOanKsxxk1pth1BnhnHbGOJ1URp1jyIFOo8N7H3kiOD1Ofk4nniQ5nQ5Fkfqi0Rgh
HyE4AUI+O3Y7IjjHvQ7o/AHODEKv1SPPkEfu5RHQ8gezOZKVdXSQ+redzVjiavs0zvc/ZuD0jUMf
4HY6AFCaU4oxz5jgskBFXkWEfJLiNBhItBuMPpxRYi7Bh/scWL6cOHE+G980zhH3SKRLYtQ9ws/p
hMmnvR04dAgYmOJHPpYcC/YeHUdrK5Cby69sBQDleeUYcg1Fxpx0DnM7HSZOzwiam4Hz54FzDv44
j511oKQEsFrDG98z3BvfAGDNs2LIHcU5lSqDYNbMPSOoCkM72svhdBhrtMRcgt6RcTgcQHMzJ7Sk
ckHJvCKvIkZhAQ+5gMqgS7IZGTYUo86IPEMeJnwTWLYM2PWxF74ZX8paNE2Su/Z48JnPkM/8rknO
3liAGMqkb5Lc8Gg2g/L5MO4dT+50wl6a/jcOu4cJzo8oXk4HIItw177xCE6fk/vaTgAw6AwoNpOe
XLp8wZnp+MO79RpNhHwuvTQFSbLg/OhAlCSd7nFQWk00NU8iVQVVGHAOCKpFM8mnrY083NA7McBb
n3sOOSL65JNBAEB1YTX6nf2CykFM8pk7l3SznB5hwRmOTpmvLtAkycSZqmwFADWFNQSnVgsYjZic
5FG+YETmxcVAXV0K8okjyU+Px+qTj9OpLgjrMzzmlECcBgOpfe8/xTMyzynBoR6GPnlmEDWFNeif
iuJ0Tgmbd40G+MxngE+6B1CVzy+DOHpmHJdfTqZQjFxQMrfkWOCf8ZOnucxmBDxTKUsCTJKk05n+
iUFU5Fam3DEGgBKzBacHHWhvB4KhICivNyWZ67Q6VOZXksk1mzHjcaHAVBB7hDweZ3ix0OQzdy5g
yJuCBrqUbUoEZwkOnCARGgD43ZMpMwiALMLeqd6I05nwTaAkJ/l9J7Q+6UVYXAzULwjB7mSp7SfZ
CPv0uIORQThSGgoA1BbVRnCmLF9QVDSNDRu10QgsXw70TbBkEHGHMoCoUTMjc61/mpdR9072RjMI
90hqp0PjdBOjvuoq4Mwo/0jyyOm4DIKH06kprEHfVF9kzKmpFJF5XC0aIDhPDrOUg1hwluSU4Pi5
WJypNr7ZcLr4kCSjfAEAV18NdA/wi3gtZgu6z0dxTvgmYOZRtqouqEafM4rTzZfMw1UDGidf51iS
U4Iz9nHRJRbgApO5RqMhRj3ZGyZzFy+FAYiUBXQ6YNHldphnKhO/n4UkTSELmjocMBrJxFq0edAI
JJ+gz8Mr5QKikblGAyy52o58KrWhAIAxaEHFHAeKi4nTCXrcKZ0OANQWRvUZ8npQZC7i53Tyosay
bOUYDFRB7NHzJDjNlAWUaRxz55K/e3lkEADDqM1mUH4/pvxTyY+eBwKkRUyni9kvWXHVDKYCjsSN
xbhDGQCQr7VgaMoRufNiyuWAJkSlzCAiOPV6QKvFpDt1FxMzQgOIUY/6+JFkscmCs0NRJz7uHYdu
OiCcJJ0CcDJIctjDs8ZrtuDsoLgMIoLTZIJ7ih9OunwBEKcz4OSnT0uOBedHYjMII48MIl6fHqdD
sNO56iqgb5J/bb/fEdWnGLmgZA4Q8jk/eZ6Qj8ed8iAOkyTpya3vsCM4kWRi42qnlMeCpnZS/x73
jaNMm88vkqRJ0mRCyOPhVRIAEIkkAaBxiR1wsuBkiXhnXBYsaCPtiZP+SUFOp2+qDzCZQPm8gvRJ
k2TLpXboPCw44w5lAIBvogTzWh3QaIjTmfG6eGUQtYWxkXmqS7ZiMp2wPtsuH4LOX87+c3HG4hu3
oHqBI3KcwOueIN/DsaEcgxMAZTJhxuNKfvScgZWJc/kKLwLwspfl4nB6x0tQXDmOwvDVIXwziNrC
2ljymUp9xxGzfAEAV15Jwa0dgDUvNUlSbguQ40BtbRSnmAwiJUnG1fYBUr5wa+ywGFKTpCFYAneQ
3DtE4xScQZhM/Mg8zul0dAAe3QByZlLjzNeXYMI/jmXLOGFxygUn87qiOmIsJhNCXi//yJwRoVUu
sGOij1/EOzVkQWM7IcmzE2dRaywTXBagfMJw0ouwqsmOqQFbwlubbDjHByyYv5Dg7J3s5Y8zjiQF
4QwvwupmO7wjNmYnGhGWQxmj5y2oayI4B12DsOlLeDmdiLGENwErzPycI11eAwDrggEEJ2yRmx5j
JE6ng2cJmQOAN+BFyOsRlkGAkLlNX5L86PnMDCmQ6/UxmU5xjR0adyX6+1kcRxzO/h4LrHPpe2Qo
jDiHoAnMpDxFEovTCPh9yY+eA6yReV7pJDSUHmdPsFwPG4fzXHcJSmvGI75w1DNKNr751vbDY3rd
E4Jq5gCQmxcC8odw7mjqbPzsMQsKKx2RBGzMM5byxDcQ3ith1Mx97kneXUy0PnU6QF8ygDOHz4ic
cQAAIABJREFUUpP5ue4SmIrGURB+6+b773yfEx+bXHAyjydJoTVzADCUDMI9aIu5kxlAgsIcDsA5
XALbfGIsPWM9mGOyykOSzA1QD3E6odxB6Dw2nDrFjdPvB4bOWFBVT3CeGDuB+txqwTg1Pj9vfTLJ
3KO1owA27NvH8jMMrKEQcO64BZXzojib8+cKy3Q0GoSMBtgMyZ/Di8HJMGrHtB3Fehs+/JAbJwCc
PFSCslqSkZ10nERDXq0wpwMgaDLAqk9SCgJiNpSZ+hxy21Gsq8L776fG2b3fguKqqHMs0pihCY/J
F+eM0QCrjuXUIVPi9iAAsuldqKnCe++lxnnkEwsKKghO34wPdqed9x5EVJ9G6PyBxD0kNpy50Vr0
iHsEZk0RPvqApWMqDueB3SXIsUSd40nHSV7lIGueFQ6vI9L04HdP8S5bjXpGQVEUpoPTCBomcGBX
eUqce3eWwFAYvRTspaMvceJjkwtP5owyi8bv59UbC4Qj8zBJDnnsWFBpS1yEcQp7+22gtqwUkwGy
KE44TqDWVCGMfMxmaP3TqUmSJTIfdNvRYLNh+/a479frSekiHAp/8AFgLSyFG+TnToydwDyzjXck
SZeDtIEZlPHYrANiyyx2px3zy1lwAjE6PXAAyEU5/AbSkdQ91o0FuTXCMh0QkrQZkt9ilywjszvt
mFtalRLnuXOAZ9iKGfNABGdL/jxhzhHAjFGPSi4yT7IHMeAcQG2xDe++y41zYgI4d7QS0+a+CM5F
BQt44aS7bkJUCAGDDhV6jqg8fMdRfI2X9G6nxun3Awc+qIHHcBYAcY7ziudCQzszDikyFSEYCmLK
P0Vw6pI/EQkgpnzh8DoQokIYcA6gMrcqJU6KAnb/dQ6mtGdAURSG3EPQa/XQ8XA6dNPDgHMAM0YD
TIFQ0neJIzhNJpj0Jpj1Zkz5pzDoGkSp2Yp332Gh2bjS6s43q+HXjcIb8MI/4yc2LFAuOJnXFdXx
J0mvN3KcPZ58VnRU4v/+L+7748h8yxbgsgVNODpyFACJzKsNFsFlFu10gNvpcOC8vM2WiDMO65Yt
wIqmVhweJs+VnHCcQB1fp0Pj1GoR1GthTUWSYZxM8rG77FjWasMrr6TGeXXrQhwcIs/Qnxg7gfk5
/DII2ulQFIUZo56bfJKQpN1lxyWNBCdX6WrLFuCahW04OBzF2ZhXxwtnRV4FJnwT5PFxgzY1Tmbm
6IniXDzfhtdeQ2LpioFz2zbgigWLcGTkEEJUCN2j3Wgp4Od0zHozCk2FGHGPEJy65Pd1Y3qalG20
WlhyLJj0TyIYCsLusqO1jpCk250c586dwELbAgx7B+GadqF7tBsLixpIySxFX51Go4m0/fn1QLku
+UPVACLlC4POgHxjPsa94xhwDmBBpQ0HDgBDQ3HfzyDJ/fuBIkMZ8k256J3qxfHR42gpb4lZT1xS
XViNvqk++PRAmTafl9MBotnjgHMAcy1VcDjIe8MxEhdsDA8a0FTWgKMjR9Hj6MHc4rkp8cXLBSdz
ZllANz3DvWHHIMl4o153nQ2vvx5XejYaI4cyKArYuhX4u6uXYK99LwCgx9GDSkOx4A1Q/fRMaqfD
sgFqd9mx+gobdu4kl0TFSBz53H1NJ/bZ94GiKJwYO4EanjXz6oJq2J12BENBBAw6WHUc5MPUZ24s
zis7bDh5kiw0TpzXLsaxkWMIBAM4MXYCc838ylZFJlIGmPRPpiafJDgHnAPobLAhGIy9P5oN5+2r
5mPcOw6H14HusW7Mz6nihVOn1cGWb8OAcwDTeg0qtBzkw3COxeZiuKZdCAQDGHAOoLm6CnV14Mwe
33wTuOX6EpTlluGU4xSOjx1HU94cXjiBaAnDr6dQzoWTsT51Wh2KzcUY845hwDmAeWVVuOwy4I03
WHCGmwnefBO4aY0eLWUtODR0CMdHj2NhIb8MgonTq6NQquUosTBaUoHo3NtddtQUVeHGG5EYcMTN
+403Aouti3Fw6CCOjx5Hc1lzzJipcPZP9cOrC8Ki4YjKgWiJDYhctjXgHEBVYRVuuw3405+4ca5e
DbRZ23Bw6CCOjRwjTkegXHgyD7cmUmGSTGgzY0qSiHfQNYi2eTa0twNvvcX4fsahjE8+AfLzgdVL
FuLM+BlM+iZxbuIcWfQ8FmF5Xjlc0y54KPKoY7mRI+KNwxlxOk476itsWLUKSbOIU6eA0VFgzRU1
CFEh2F129Iz1wKbnl0GY9CZYciwYdA0iYNCmNuo4nBRFDjbVFNuwbl3yRTg6SsosN1ybh7qiOhwb
PYYTYydQayznhZOO0Pqm+uDXAWU8cRaaCjEdnCZ1WpcdVQU23HEH8FJ8iTGM0+MBduwAVt+gxWLr
YhwYPIDu0W7M51m2AqK9+3SExgenVqNFaQ65xIo+TZsUp9eLmRkSbKxZA7RXtuPAEMHJt2xF4yQk
CZRqOciHgROIlgLpdj8ufVIUIfo1axgkOXYczSKcjldPoVTD0W47PU0i/fDuJR3A0Uf5uXACwF/+
Eodz9DhaihoIL6RoSWXidGtDKNGmaAtmCTiYOLnI/I03iNNpq2jDoWHiHFvKVEjm+cZ8mPQmdDvP
whAIYlk1R28Oi8KCoSBGPaOoyKvA5z4H/PGPcT8TVtrTTwP33kvuOG4tb8Vr3a/BVmDj1U4FEOOs
KaxBz1gPvHoKV5RfkvybmeWLME6KoohRF9g4cf7iF8A99wA6nQadlZ14+/TbCIQCKV+bYUptEdmH
cGoCWFbK8ZggQ595RmL87oA7sgg/97nkxvKrXwHr15Mf77R14uP+j3F+8jwqdUX8cYaznQn4sLio
gRdODb256B6JnFKlccaUWsLp9v/+L+mfLisDOio7sH9wP7rHunmXrYCoUY+FXGjIr+OFE4hNt2mj
fuWVuFJLGOdrrwHz5wMLFgDt1jCZj3Vjfi6/DIKJczg0hTlma/JvTIKTOMcq3HorCYpiSi3heX/v
PcKFl1xCcB4cJiTZKILMh2YmuDe+2ZwOQ5+rVwN795LL6OJxHjpEssprrokl89aC+fxxFtSgz9mH
oeAkrFyZYxzWGKeTX4UVKwC7HTh5MhHn+fPArl3AzTeTyPzQ8CEcGz1GMgiBcsHJHCB18yf2Pw1j
EMjRcaQ/jPSQ3hA5OnIUlhwL9Fo91q8nXs7pZPyM2QzHgA8vvwx89avkoyW2JXjxyItosDTwrp8B
hCR/ue+XCBoNqNDzKwuY9CbkGnJxaPgQPAEPSswluPlmMoEx9T6zGZ5xH557DrjvPvJRp60TLx55
EY2ljWRzSQBJ/u7w7zBj1KGxYA4vnAA5Yr/Pvi8SSV5zDXDqFLlkn4lzxuXFz38OfP3r5KMOawde
Pv4yqgureXUKRHAW1WLrqa1w64JYalnEjZMxZm1RLXb37Y44xyVLSGfNnj2xOCmvD08+CXzjG2Gc
lR14+8zb0ECDIor7VZx4nHv692A4OIXPcDnxOH3OK56H98+9H7nCYf58oLaW1MaZOOHz4YkngG9+
k3zUbm3Hnv496J/qR62BX6YDkHk/OnoUp70DWGHlFxQBQGNpI94+/XYkMi8rI6drX36ZHec3vkEC
ZmamUy/Q6ZyZOIODkz34TDnHkzpxOBdWLMQbPW9EyDwnh5Qnfvc7dpz/9E+k0tpW0RYh86Z8/k6n
urAavZO9+Nvofu71Sbfqhg8xLKlcgpePv4x+Zz+qCqqg05HA57e/TcT51FPAF78IFBSEI/MhQuYZ
jcxfeuklLFy4EDqdDvtYe9j4S21hLZ4/8FsETbGn9hKEMbkGnQHfveK7WPO/ayInwaxWYO1aYNMm
xs+Yzfjjb3249VagPNwhtMS2BH899Vc0ljYKI/PCWjz36XPQ5ebxxgkAP7zmh1j9P6tRmU+uHMjP
B778ZeAHP4jFufUVH664gkRoAFkUb516SzDOmsIaPLvvWeQUWBL617lw/qjrR7jzT3fCoDUgz5gH
vR741reA730vFufu7T7U1UWftuq0dYrG+at9v0JRkRXa6UDyb4zDublrMx7Y8gCG3cOw5lmh0QAP
Pgg89BAjOjebcXSfD8EgsGoV+aijsiOCU4hzrCmowTP7nkGppYYcBeeJ8/HrHsfG9zbi9PjpyCnA
730PePhhxt1aZjP6Tvpw+jSwbh35qL2yHe+eeRdziufwugwsgrOwBr/Z/xuUllShiOLoS4/DuXHl
Rvxy7y9xcOhgBOfDDwOPPMJYPmYzxu0+vP8+yRwBQuZ/6/8bzHozimHmT5IF1fjjkT8iv6CU914J
ADx0xUP468m/Yuf5nRGbf+gh4NFHgcnJKE7PuA9//jPwta+Rj5rLmnFm4gyG3cOCM7KtJ7ciaNST
rjeeOL+29Gs45TiF17tfj+jzO98Bfv7z6AP0MJsRcPnw7LPAAw9Ef59vxocjw0cyG5m3tbXhlVde
wVVXXSV2iIjUFtVCo9GQ4+pc5MMoXwCEJNc2rUW9pT7y2WOPAc88E01ppnVm/P45XySKBAiZz4Rm
REXmgVAAOfklgkjy/mX3485Fd8bsUD/yCPDaa9Hnz6Z1ZvzheV8kigQISc6EZtBoEe50vDNeFBVZ
BeG8reU2fGXJV1BbVBv57DvfIRdv0e1/Ab0ZL70Qi7OjsgMzoRk0lTYJxukJeFBRWicI54q6FfjO
Zd9BaU5p5FK2r3yFnCOgo8kZgxmvvkhw0k0IC8sXgqIoNJUJw1lTWANPwIPaigWCcLaUt2DD1RsQ
pIKRjf3168nrQ889R74naDRj6//5cN990ceu5pfMh1lvFqxPGmeDbZEgnFUFVdjctRlT/qnIZWDX
XEMeAHnySfI9IZMZ773lw733kquOAaA0txTWPGt0U1EATnfAjbY5SwXZe6GpEE+ueRLjvvEISXZ2
knrzo4+S76FMZuzd6cNtt0WDN5PehAWWBVhgWcDraoR4nEvnXwmNAH0adUb8bM3PYnDW1wP/8A/E
7gEAZjO69/uwYkU0eNNoNGiztqEirwIFphRdPiySehcgiTSLvaeRReYVz8PNjTdDY35f0CLUaDR4
+qanI69aA+TBiX/5F+COO4jHu+y8GV/7ug+XMLLjxdbF0Gl0aChtAHxHeE/uvOJ5uL7+euhyzqXG
WRl7Ou3H1/+YXCgWluJi4D/+A7jrLuCf/xloO2LGjbf6IlEkACywLEC+MT8c8R4gP8RD6i31uGrO
VTDlhlLjjPu3b1i5AQ8seyDy95wcYPNmst/w0ENA49/MWHyJD3fcEf2ZirwKVBVUhXG6eOuzvqQe
S2xLUFBQKsioAeDBKx7E5xZ+LvJ3vR74yU+Az3+ePIRcv92MSpsP93wl+jM5hhw0lTURkhzlTz4N
pQ1oLmtGuaVW0PoEgPsuvQ9Xzrky0tam0RCcq1cT51O/xQwD5cO3vx39Ga2GbNY2lTUBLv44F1gW
oMHSgDpro2Cc97Tfg3pLfcwBns2bgcsuI0M1vW4GNTGOf//32KEWWxejurBaEJnPK5mH1vJWNOs7
AWd8DyQ3znXN6/Dm3W+iprAm8tkPfwgsXkxOXLb+zYx8uw+PP56IMxAMCMJZVVCFJbYlWFq2Ajh4
VBDOrvouvHTHSzER9r/9G7netqAA6Dhnhu2cD//919ih2iraYNbzwxcvGamZb9iwIfLfjh07Er5+
/6X34xc3/SJ690cyYVEagIQrcx98kPz32muApcqMu2+LHdOsN+OLHV/EEtsSQZN7T/s9+N1tvxOF
U6PRJHjbr36VRBRbtgClNWZ88e9ix9RqtLin/R6yKSwA52ebPos37n4joc+eD06tRpvQUbR+PfCL
X5CukJIqM750ty/hQOJdi+7C5TWXC8K5cu5KfPilD0XjnFcyL+azVauAF18kT9jllZrxxTt9CU0L
t7fejivrrhSEc7F1MQ7/02FyYlTEvC+2xm5CX3IJae87fhzQ5pnx9+t9CVBubboVK+esFISzrqgO
3Q90p85wk+BcUbci5rOGBjLndjvgDuXgtht9kePmtNzceDOunXutIJzF5mIcue8IDLn5gsqVNM41
DWtier6rqsgelNsNDE6asXqlD2Vxx0BuqL8B182/ThBOo86Ivf+4Fzn5xaJ46fbW22O4qbiY7Ovo
9UD3OTOuvNSHmqhPwo4dO+DY4oBmhwYbNmzghZEpnJF5V1cXBiNFnqhs2rQJa9eu5f1LUgHLM+Yh
D3mijJpNdDrg7rvJf7iWfcxnb3mW/EHg5Bp1RslwajSkTrpuHYA7cgB/4phP3fiUYJz0Czm8cFZw
1AIZOFevJv/hH82sOP/r+v8K43wpmoenHFdDohCJ9AmQm+quugrAw2bA7034+saVG8M4/8ZbnwDR
Kd3mKgXOSy8l/2GzGRhOvFzmwSseJH/48DlBODV0O65E+mxrA55+GsCzZmBX4pj3XRrerT/9qiCc
AGJ619PF2dgI/PSnAF4xA79NxHlPe7jQ/8EHFxRnXR1I1vCeGXgkFufKlSuxcuXKyN83btwoCCYn
mW+L2XbPgEi4CGPG5JoIASQZM6bA8kXaY4rFyUU+LOWLlMJyw2PCmKUcB6rYhA9J8nQQMWPKoU+J
jDpmTDlwJpxKY4iS1qcc9i41zpyczM+7CJGkzEIlnKUWKRJGPjFjztZFqCby8XiSf10pOC+EUV/M
OHNz5Zl3qYO3i53MX3nlFdTW1mL37t246aabsGbNmvTR8DFqJUQUfKJTJRiLmoxaDTjVpM+sc2QX
Ja1PrjFFiOhulnXr1mEd3RgrlajJqNVgLHIZNesF4mGZ7UYdv/OWSrIkmfzrSsF5IexdhCjiBGhE
Ui1CpUS82cgn+dcvdn1y4VTS+lTDvKslKLrYyyyyiBxGzackopTJlbrWx0efSilbqYF8+JCkUvSZ
JUl2UUuwIUKUR+bZyWWXrLEIG3M2k2TWjpJ/XS12JEKUReZqMZYsSSb/ulz6VELEeyE2wi7mcpAc
diRHJi6HHRmN5IKuyCU96YuyyJzLWOJuJuMtWZJM/nWl4FRTeS077+yilHmXU5/JWrDF4GS8tSCV
KIvMuYxFjMKAbCSpJmNJJnLhFDpmtnyR/OtKmXeTiTxqkYx4xeDU6UgQOT0tHU5A8lKLssicaxGK
IUiAW2HBIHkpQGi0z4UzECALSSkZhBrKAqnIR0llAbVkEGqYd7kiXiPHVdpicALyBJqp5l6gKI/M
ky0YMQYNcBs1fac110OtbMJFPjROoWPO5lY6NZUF1IJTaqdDXy4nR8SbjHjliHjTIfNkc5+NzFkk
02UWJU0sl5emKJLi8XiENka4yCcYJP8pJYNQS1lALTiljnj1ekK+gSSPiIi1Ja41qiSbT1U1yJJ5
nGQnlv1rfj9JHYVG+3yco1IyCLVEvGrAqbaId7YGcBc1mcs1sVylGzVMrFxRj9R7EBRFviYmg0g2
7/S+hpHjGTShOAFlRbxA3CvPDLnY16hacGYjc4GSaYWJJTS14Mx01BMIkKgw/kWIVMLHoMVkEFJv
2Gm13Jtrs5l8Lnac2chcoGRaYW638Huygczj9HjIohcqcpStuGr7Ho/4MZNFvGJxGgwk2mU7lEFR
ZFyhGQSNlY18xGYQQGpHLhanGiLeLE7hP5dElEXmmW5NdLvFk2Qmo4l0nE4mcXo84nBy1XjF4uQ6
lOH3R3+nUEnmIMV2MQHy6FSONSqHI5drn0zq8mKmbf7++wUPpzwyz3TEKwdJyuF0xOJM1k4mVp9c
hzLE4gSSG4tYnEBynYqddyD53MuBk6LEZ2XJIslgkJTDxET7F0PAoZZsfP9+wcMpi8y5JlZsnzlX
NCF2Yi+E0xFj0HSNl23cdCLeZHXjdMmcTadykKRacHq9RNc6nfAxkzlHuswgdQahJltSSqaTSp8C
RVlkrpbyBT0mW3Qq1umYTMnrxmohH7FlK4A74hWT6QDykHkmI/N0cWZq3oNB4tzFBlvJ9iCUlkFk
ej9PoCiLzNWysajVRk/ExYtYnHQXCNuhjNlQvshG5omfp6vPTM57bq64aD+ZPsWezubCCaSXQWQj
cwFCb1iFQolfU1JkDlwYYxEjyRyk2AwCUE/Em6zEpsQMgm2O1BKZy6VPqXHS3U1iOo6S6TMUIntI
cuyTCRRlkblWy10/FDO5XIcy1GQscjgdJZUv1BTxqmXe1aDPC2FHYqJ9rqDIZBKfQbCNSVEXAZkD
mfXU6US8mYzMlRbxZjJCU2IGoQYyl2vepc4g5HA6yeYonfUph70nwzk9TQJbgaI8MldLJKmWjTC5
IjS2MZVY45WDfOQwarYx03WOyeZdrB0l+7crzY7y8tgjW6U58fx8SXEqj8zlinzUEFEkM5Z0a+Zy
GIscRi21PmepUQOQx+nk5wMuV+LnSrOjWapP5ZE5V3+s1JMrF0mKjXzkWoRyGIscRp0pY1FaeY0L
58XudOQINuRYn3IFGxc9mcuxCJ3OxM9nA0lm2ljkKAsoTZ9qwKmCSBKAPHYkMUkCUIU+lUfmavLU
cmQQckSSWfKJFSXiVEs5SA4nroZ5V0GmozwyV1O6rYYMIpPGosSyQKaMWg4nrkSnI/W8qyXYUMH6
VB6Zq0BpANQTUXAZSzq1fTWTj5pwKqlsJUf5IpMRr9K6rZRSM3/wwQfR0tKC9vZ23HbbbZicnBQ7
VKzIobSCAnUbtRy3/CktksykE5fjRO1sdzoXO85Mr89Mkvn111+PI0eO4MCBA2hsbMSjjz4qdqhY
yWQkqcQyi9QRmppwytEdpOaMbDaXreSadzV0MWU6Mu/q6oI2fEpp+fLl6OvrEztUrKilfKEWnGrK
INRAPmqp8crV4qsGO1JLOSgnh9xFFf8a1oWsmf/617/GjTfeKMVQmVuEoVB6Y6rFqNVEkmpwjmpx
4mqad7lwxl8nLcW8x4+ZDk6tln3di8TJ+fJuV1cXBgcHEz7ftGkT1q5dCwD4z//8TxiNRtx9991J
x9mwYUPkzytXrsTKlSuT/9KcnMSODvrNxnQm99y52M/oNE7EHQgRnJkqCyht40bt5DMbui/UlJEl
w1lZKW5Mo5FcfDU9HXsfejr6NBgIVwQCsbcupqNPIJpFFBRgx44d2LFjB7Btm6hyECeZb9u2jfOH
f/Ob3+DNN9/EO++8w/l9TDJPKbm5wNBQ7GeBAFGk0FffaWFbhOlMLJA5o56ZEf9QMKCefuNMlwXU
0hetpI1aes2HQrFBkBQ4KSr25sF0SZLuaJGKzJlY48m8qCg9nOG5jwS6IyNASws2vv22oKFEl1m2
bt2KzZs349VXX4VZbCTKJmyL0OkkHSliRQ4yZzNqunQjdmFz4RRzxSYgz30vbDjp9yqljszFPhQM
qKfVUy0nFnU69nuO0sGp15Nx4x9lkYLM5Qjg4nUqldNhSqZr5l//+tfhcrnQ1dWFzs5O3HfffWKH
ihU2hU1Opuf92FoT0yEegB2n00nGFPNmI8B+aChdnGwkSVFEp4WF4sZkMxT62k4xL94Dyclnakpa
nIA8NfN0Ag6TiWyCTU/Hfi6Fc5SybgxkjiTTCTYA+QK4eFtSkNMRWbcAenp6xP4ot7BNbDoGDSRX
WDqLhW1ilYiTTZ8+H3E4Yt5XBDJnKADRqVhHTt+ayEzhQyHye6Ru9UwHp0YTjdCYKXw6OtXpiGOl
n1+jJd3AiM4irFZpcALRuS8ujn6Wjj6BzDmdqSnFVA3UcQI03QWYqYmVI4OQgyTl0qfUTicQIP+J
HZd2WMx/P/0yTDob32wRrxLX6Gy2JbbSlRwB3ORkrBMSKslwXhRknqnIXI7yRTqlC0A9hmI2k5IA
8yk+OfUpdr8ASNRpuvrUakn07PdHPwuFIh0JaeFk1k7psks6+1FqIXM14ZTalrKRuUDJVCSZbmpI
e2lm1KdEp8MsC9AihaH4fLH/9nRxAtKTOZBo1PReidhoH2DHKfbFe1ri1yhFyVO+kGKNykGS8RuL
UuyTycFNF3oDVDaRKzKP31iUozUx3YnV60nUx3w6TolOB5Av4mX+25WIE0ic+3TnHZDP6TBxejyk
ji52kxpIxElv2qYzJpstTUwoJuKNCFtgpCCc6iDzdI0lJ0eesoDUTgeQ3qjNZlISCIWin8lFPuk4
HSBx7uXAme68A4lGrVQyz82NjfqUjJM57/R6TafEFI+Tbp1NZ42y1bezZRYOkaNLJFlZQOqIV4nk
o9Gwk4/SnA6QaCxKdToFBWRN0qLEeQcIpnicSpz34mIS4dJC61PKvRKvl2x8i20bBoCSEmB8PPr3
mRkybn6++DEv6g3QeEMBlBlR0G19mSDJdMkn3ljkKF9IQT7xxqJU8rFYEnEqbX0C7PqUAqeUeyUA
welwRP8uBc54kpRj3um2xHT3SuI3vgMBUVmJ8sg8P5+URJjdAnIYtRQRL9vkKtGoLRbpjSUTJCmF
PuUw6njykWve03Xiap13JTudTDhxkRvfyiNzmiRns7EwN2uliHjZcErhHJk4lazPTJCPEjMIOcgn
E85RqeU1Npzp9JgDks678sgcAEpL1WPU8U5HiUadKeeohgxCLueY1ad4yVTEqwacaehTmWSeCZJU
k1GrIeKdTfrMVCSpBvJRi9NRajmIvnKClosuMs9E+UItJCmXsaTrHOOvHpCDfJSc6Sg4QouIWsqV
anE6Cnfi6iBzKYxaDvJRawahVKNWs3NUIk41kaRaavtMnOkeGAJmGZmne10rLbO5LKAW8lFLOYgt
Qkt3fbKRT3bexYsc3SyZakkVOe/KJPPSUmBsjPzZ6yVHhcW+tENLvNJcLnVE5mpJD9XkHJVq1Gpt
pVMDTqlO/gLRsyUKyyCUSeZMo5ZCYUDi5A4Nxd7JLEaYOKU4ggwk4hwZAcrL0xtTrtZEJk6Hgxhl
OpIJ5zgxkf6YmShbpfu6FqAe55ibSw7L0PfyKBUnEBsYSYGTfpiEfmnpoiZzKQwaiJ1cn48ozWJJ
b0w2p5POEWQgsbZvtwM2W3pjMiPJmRny70/nCDKQaCwDA0BVVXpjZiJCs9ulwSk3SUoiDRMTAAAL
aUlEQVQx73l5hCToA3hyZBCDg+kHRRpN7NxLgZO+boO+k2h4GCgrS29MIBFnun3m8VeNjI2J5iXl
k7kckbndTl7+Tpd45XY6TifZM5AyQqNxpvtvZ+KkKELmUjgdGqcUd4TH4wSA/v70yTw/nxAkfWOg
HGQuBU45SDK+LNDfD1RXpzcmIH3EG/9eaX8/UFOT3phAbGAkBzeloU/lk7kcJClFdAbI53ToFkqa
IKV0OlKUWIBYfTocJBKS4gIrn4+QZLrvqbLhDAZJ2aqyMr0xmVc50HeES10OGhiQjiSlJJ/490ql
InM5SJLpeJTqdIDYue/rE+10lE/mUimsoCCRJNMVtTidggISoQQC0tR3gVicUpRYgNhIUg6cw8Nk
ztK5e5sW2qjpdzvTHZNZFvD7ybpPd68EiK5RuissXZ3GlwWkJEk5I96+PmXjpLnpoovMmd0sUpIk
rTAp6pEAweXxEJKUKzKXmiSldI707ZZS4QRicUox7/QeRDAoLU46kpRKnzodwToxES0DpnMbXzxO
n4+MJ/YRb6aUlRHH6HQSvUrx75cj4rVaiS7pMqBSM4jqauJsgLQic336SGQQZrot5cQODJA/SxXx
0iTpcEiHs6YG6O0lEZpUGQQQjdCkIsnychKdOZ3SkyQdSUqhT6OREOO5c/LgLC6WBicALFgAnDxJ
ggMpiAeQfn0CBGdPD5mj6ur0y4BAlCT9frJJT7cBpiMNDQRnUxMpuUgxJjMyl+LQEBA776OjosuA
yozM49NtKchn3jzSjuh2y0OSUuEsLCQE0dcnndMBYnFKsQC1WrIIT5yQhySlwgkQYz5xQrqSABAl
SSlxNjbKo08pMwggilMOfUrVFQZEyVyqzU8gijMQkKYrDIiS+eAgCZL04mJsZZI5EBtJSpXGLlgA
dHdLV2YBojc8Smkszc3A8ePykKTUOLu7lY+zsVEenGokSSmEJkm5ymtSZzpS65O5pyOF05EIp/LJ
XKqIFwBaWuQjSSlxMslcqWUWgES8cpKk0nHK4XTkisylzCCYEa9UJCmHPuXCKYfT6elJq14OKJnM
6U1QKZXW0gIcOyZtZC5XxHv8uLLLLAAhSamdoxyRpBwkycQpldOROzKXEqfUJClnZC5VJwsgD866
OrKhfPLkRRyZj44Chw9LNxEtLcCBA4TQpDgNBkRJ8sQJoKJCmjGbm4nTkYN8zp4ljlIKkbPMMjCQ
/uk6WuTMIEZGpI0kaTKXGqfDIS35DA0Bp04pO+ItLiYHh/bulb5mLiVOnQ6YOxf44IOLNDK3WIDn
niP9t1dcIc2YLS3Ae++RzhYp2r4AgvPVVwlJ3nyzNGM2NwP79pE/p3sCkhaLBdi5E3jnHeCOO6QZ
k47QhobSP4hDi8UCHDwI/M//AHfeKc2YdXUkMDh9WlryOXUK+O//lk6fRUVkQ+3TT6WNJPv6gB//
GLjpJmnG1OsJ+Xz4obQ4h4cJzquvlmZMgDjIDz6QFufYGPCznwFLl0ozJkCyiDRxima0H/zgB2hv
b0dHRwdWrVqF3t5e0SBYhSafRx6RZpMBIOTjdEpXYgEIzvfeAzZsSHmz444dO/iNWV1N+nelis4A
gnP7duD730//ThpaCgqirXkC+5eT6sJiAd5/H7j/fqC+Pn2MAIl86uvJwSmpMrKSEmD3bmD9euDy
y9MaKkYXjY0kc5QyMj94ELjkEuD226UZE4jilJIkT5/GjpkZ4JvflGZMgJC50yk9mQ8NAZs2STMm
QMjc6bwwkfl3v/tdHDhwAPv378ett96KjRs3igbBKmVlQEcHsHatdGPm5JCIQkqSLC8nEf/nP5/y
W3mTuVZLSgNS4qypIQZ4333SjQmQLEIEzqS6mDOH6POhh9LDFS9NTcSJS5WRzZlDIjMJDDqBzPPz
patvV1UB111HMggppaGB/F/KrrA778SOq6+Wbo4AQpKAdGRuMhFn8/LL0hzAokUCnKK1VsBI/10u
F8qkinho+fu/B15/XbqonJaWFmkj83XrSCSZ7h0i8dLcLC3Oq68mEVq698LHC02SUsnChWSfJN17
XuKlsVFa51hVBXz8sXRlMFqkxllYCGzblv71xPHS2Ej2iKS4GgEg4/z+99LPe0MDIV2p9okA4Kc/
lW5/jBYJyDytE6D/+q//ihdeeAG5ubnYvXt3OkMlSmGhdNEJUzo7pdu4AAg5Su3IAKC9nZwwk1Kk
jCRoaWuLXjMqlUgZmdGyaBFw5oz040otra0ke1S6tLSQ7ETp0txM9kykDgqllqYmkuWn4cw0FEVR
yb7Y1dWFwcHBhM83bdqEtYzyx2OPPYbu7m4899xzib9A6UrMSlaykhWFCgc9JwgnmfOV8+fP48Yb
b8Thw4fTHSorWclKVrIiQkTnsz09PZE/v/rqq+js7JQEUFaykpWsZEW4iI7Mb7/9dnR3d0On06G+
vh5PP/00KqTeFMhKVrKSlazwEtGR+Z/+9CccOnQI+/fvx5///OcEIt+6dSuam5vR0NCAxx9/PG2g
apIvfelLsFqtaGtri3zmcDjQ1dWFxsZGXH/99ZiQenNTodLb24trrrkGCxcuxKJFi/Dkk08CmJ36
8Pl8WL58OTo6OtDa2oqHH34YwOzUBS3BYBCdnZ2RPbjZqou5c+di8eLF6OzsxLJlywAI14UsJ0CD
wSAeeOABbN26FUePHsXvf/97HDt2TI5fpUi59957sXXr1pjPHnvsMXR1deHEiRNYtWoVHnvssQuE
LrNiMBjwk5/8BEeOHMHu3bvx1FNP4dixY7NSH2azGdu3b8f+/ftx8OBBbN++HTt37pyVuqDliSee
QGtra6RRYrbqQqPRYMeOHfj000+xZ88eACJ0Qckgu3btom644YbI3x999FHq0UcfleNXKVbOnDlD
LVq0KPL3pqYmanBwkKIoirLb7VRTU9OFgnZB5bOf/Sy1bdu2Wa8Pt9tNLV26lDp8+PCs1UVvby+1
atUq6t1336VuvvlmiqJmr53MnTuXGh0djflMqC5kicz7+/tRW1sb+XtNTQ36+/vl+FWqkaGhIVit
VgCA1WrF0NDQBUaUeTl79iw+/fRTLF++fNbqIxQKoaOjA1arNVJ+mq26+Pa3v43NmzdDyzhXMFt1
odFocN1112Hp0qV45plnAAjXhSzPxmV7y7lFo9HMOh25XC6sX78eTzzxRMzpYWB26UOr1WL//v2Y
nJzEDTfcgO3bt8d8fbbo4i9/+QsqKirQ2dmZ9GqH2aILAPjwww9hs9kwMjKCrq4uNDc3x3ydjy5k
icyrq6tjLt7q7e1FjVRXUKpUrFZr5ACW3W6fVZ0/gUAA69evxxe+8AXceuutAGa3PgCgqKgIN910
E/bu3TsrdbFr1y689tprmDdvHu666y68++67+MIXvjArdQEAtvCVGOXl5Vi3bh327NkjWBeykPnS
pUvR09ODs2fPYnp6Gi+++CJuueUWOX6VauSWW27B888/DwB4/vnnI6R2sQtFUfjyl7+M1tZWfOtb
34p8Phv1MTo6GulI8Hq92LZtGzo7O2elLjZt2oTe3l6cOXMGf/jDH3DttdfihRdemJW68Hg8cDqd
AAC324233noLbW1twnUhV0H/zTffpBobG6n6+npq06ZNcv0aRcqdd95J2Ww2ymAwUDU1NdSvf/1r
amxsjFq1ahXV0NBAdXV1UePj4xcaZkbkgw8+oDQaDdXe3k51dHRQHR0d1JYtW2alPg4ePEh1dnZS
7e3tVFtbG/WjH/2IoihqVuqCKTt27KDWrl1LUdTs1MXp06ep9vZ2qr29nVq4cGGEL4XqQpLj/FnJ
SlaykpULK8p9aSgrWclKVrLCW7JknpWsZCUrF4FkyTwrWclKVi4CyZJ5VrKSlaxcBJIl86xkJStZ
uQgkS+ZZyUpWsnIRyP8DXpBEw05NBRgAAAAASUVORK5CYII=
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [ ]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span>
</pre></div>
</div>
</div>
</div>
</div></p>
<aside>
<hr/>
<nav>
<ul class="articles_timeline">
<li class="previous_article">« <a href="/getting_started_guide.html" title="Previous: Getting Started with Pelican - A step-by-step guide to how I created this blog.">Getting Started with Pelican <small>A step-by-step guide to how I created this blog.</small></a></li>
<li class="next_article"><a href="/org-mode-with-pelican.html" title="Next: Org-Mode with Pelican - testing export from org-mode">Org-Mode with Pelican <small>testing export from org-mode</small></a> »</li>
</ul>
</nav>
</aside>
</div>
<section>
<div class="span2" style="float:right;font-size:0.9em;">
<h4>Published</h4>
<time pubdate="pubdate" datetime="2013-12-03T20:30:00+01:00">déc. 3, 2013</time>
<h4>Category</h4>
<a class="category-link" href="/categories.html#Blog-Setup-ref">Blog Setup</a>
<h4>Tags</h4>
<ul class="list-of-tags tags-in-article">
<li><a href="/tags.html#python-ref">python
<span>3</span>
</a></li>
<li><a href="/tags.html#science-ref">science
<span>2</span>
</a></li>
</ul>
</div>
</section>
</div>
</article>
</div>
<div class="span1"></div>
</div>
</div>
</div>
<footer>
<div id="footer">
<ul class="footer-content">
<li class="elegant-power">Powered by <a href="http://getpelican.com/" title="Pelican Home Page">Pelican</a>. Theme: <a href="http://oncrashreboot.com/pelican-elegant" title="Theme Elegant Home Page">Elegant</a> by <a href="http://oncrashreboot.com" title="Talha Mansoor Home Page">Talha Mansoor</a></li>
</ul>
</div>
</footer> <script src="http://code.jquery.com/jquery.min.js"></script>
<script src="//netdna.bootstrapcdn.com/twitter-bootstrap/2.3.1/js/bootstrap.min.js"></script>
<script>
function validateForm(query)
{
return (query.length > 0);
}
</script>
</body>
</html>