-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathprofile_train_densenet.py
125 lines (112 loc) · 6.25 KB
/
profile_train_densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
import os
import numpy as np
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
from tqdm import tqdm
from networks import Densenet121
from utilities import ChestXrayHDF5, compute_AUCs, save_loss_AUROC_plots
from pytorch_memlab import profile
cuda = True if torch.cuda.is_available() else False
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
parser = argparse.ArgumentParser()
parser.add_argument('--size', type=int, default=256)
parser.add_argument('--n_epochs', type=int, default=5600)
parser.add_argument('--n_classes', type=int, default=14)
parser.add_argument("--lr", type=float, default=0.0001, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.9, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--weight_decay", type=float, default=0.1e-5, help="adam: weight decay (L2 penalty)")
parser.add_argument('--first_stride', type=int, default=4)
parser.add_argument('--second_stride', type=int, default=2)
parser.add_argument('--embed_dim', type=int, default=1)
parser.add_argument('--data_path', type=str, default='/home/aisinai/work/HDF5_datasets/recon_latent')
parser.add_argument('--dataset', type=str, default='mimic')
parser.add_argument('--view', type=str, default='frontal')
parser.add_argument('--save_path', type=str, default='/home/aisinai/work/VQ-VAE2/20200427/densenet121')
parser.add_argument('--vqvae_file', type=str, default='vqvae_040.pt')
parser.add_argument('--recon', type=str, default='latent', help="input type; 'orig', 'recon', or 'latent'")
args = parser.parse_args()
print(args)
torch.manual_seed(816)
CLASS_NAMES = ['No Finding', 'Enlarged Cardiomediastinum', 'Cardiomegaly', 'Lung Opacity', 'Lung Lesion',
'Edema', 'Consolidation', 'Pneumonia', 'Atelectasis', 'Pneumothorax', 'Pleural Effusion',
'Pleural Other', 'Fracture', 'Support Devices']
model = Densenet121(n_classes=args.n_classes, input_type=args.recon)
save_path = f'{args.save_path}/{args.recon}'
os.makedirs(save_path, exist_ok=True)
model = model.cuda() if cuda else model
n_gpu = torch.cuda.device_count()
if n_gpu > 1:
device_ids = list(range(n_gpu))
model = nn.DataParallel(model, device_ids=device_ids)
dataloaders = {}
dataloaders['train'] = DataLoader(ChestXrayHDF5(f'{args.data_path}/{args.dataset}_train_{args.size}_{args.recon}.hdf5'),
batch_size=64,
shuffle=True,
drop_last=True)
dataloaders['valid'] = DataLoader(ChestXrayHDF5(f'{args.data_path}/{args.dataset}_valid_{args.size}_{args.recon}.hdf5'),
batch_size=64,
shuffle=True,
drop_last=True)
lr = args.lr
optimizer = optim.Adam(model.parameters(), lr=lr, betas=(args.b1, args.b2), weight_decay=args.weight_decay)
criterion = nn.BCELoss()
@profile
def train(dataloaders, optimizer, criterion, model, n_epochs, n_classes, lr, b1, b2, weight_decay, save_path):
losses = np.zeros((2, n_epochs)) # [0,:] for train, [1,:] for val
aurocs = np.zeros((2, n_epochs, n_classes)) # [0,:] for train, [1,:] for val
best_loss = 999999
for epoch in range(n_epochs):
for phase in ['train', 'valid']:
gt = torch.FloatTensor().cuda() if cuda else torch.FloatTensor()
pred = torch.FloatTensor().cuda() if cuda else torch.FloatTensor()
model.train(phase == 'train') # True when 'train', False when 'valid'
loader = tqdm(dataloaders[phase])
for i, (img, label) in enumerate(loader):
real_img = Variable(img.type(Tensor))
real_targets = Variable(label.cuda()) if cuda else Variable(label)
with torch.set_grad_enabled(phase == 'train'):
output_C = model(real_img)
gt = torch.cat((gt, real_targets.cuda()), 0)
pred = torch.cat((pred, output_C.cuda()), 0)
# calculate gradient and update parameters in train phase
optimizer.zero_grad()
c_loss = criterion(output_C, real_targets)
if phase == 'train':
c_loss.backward()
optimizer.step()
loader.set_description((f'phase: {phase}; epoch: {epoch + 1};'
f'total_loss: {c_loss.item():.5f}; lr: {lr:.5f}'))
auroc = compute_AUCs(gt, pred, n_classes)
auroc_avg = np.array(auroc).mean()
if phase == 'train':
losses[0, epoch] = c_loss
aurocs[0, epoch, :] = auroc
elif phase == 'valid':
losses[1, epoch] = c_loss
aurocs[1, epoch, :] = auroc
if c_loss > best_loss:
print(f'decay lr from {lr} to {lr/10} as not seeing improvement in val loss')
lr = lr / 10
optimizer = torch.optim.Adam(model.parameters(), lr=lr,
betas=(b1, b2),
weight_decay=weight_decay)
if c_loss < best_loss:
best_loss = c_loss
torch.save(model.state_dict(),
f'{save_path}/best_densenet_model_epoch_{str(epoch + 1).zfill(3)}.pt')
print('-' * 10)
print(f'{phase}: [Epoch {epoch + 1} / {n_epochs}]')
print(f'[Classifier loss: {c_loss.item():.4f}; Classifier avg AUROC = {auroc_avg:.4f}%]')
for i in range(n_classes):
print(f'The AUROC of {CLASS_NAMES[i]} is {auroc[i]:.4f}')
save_loss_AUROC_plots(n_epochs, epoch, losses, aurocs, save_path)
print('END')
torch.save(model.state_dict(), f'{save_path}/densenet_{str(epoch + 1).zfill(3)}.pt')
torch.save(losses, f'{save_path}/losses.pt')
torch.save(aurocs, f'{save_path}/aurocs.pt')
train(dataloaders, optimizer, criterion, model, 1, # run only 1 epoch
args.n_classes, args.lr, args.b1, args.b2, args.weight_decay, save_path)