Description: Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If there are multiple valid strings, return any of them.
A string s is a subsequence of string t if deleting some number of characters from t (possibly 0) results in the string s.
Example:
Example 1:
Input: str1 = "abac", str2 = "cab" Output: "cabac" Explanation: str1 = "abac" is a subsequence of "cabac" because we can delete the first "c". str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac". The answer provided is the shortest such string that satisfies these properties.
Example 2:
Input: str1 = "aaaaaaaa", str2 = "aaaaaaaa" Output: "aaaaaaaa"
Constraints:
1 <= str1.length, str2.length <= 1000 str1 and str2 consist of lowercase English letters.
题目描述: 给出两个字符串 str1 和 str2,返回同时以 str1 和 str2 作为子序列的最短字符串。如果答案不止一个,则可以返回满足条件的任意一个答案。
(如果从字符串 T 中删除一些字符(也可能不删除,并且选出的这些字符可以位于 T 中的 任意位置),可以得到字符串 S,那么 S 就是 T 的子序列)
示例 :
输入:str1 = "abac", str2 = "cab" 输出:"cabac" 解释: str1 = "abac" 是 "cabac" 的一个子串,因为我们可以删去 "cabac" 的第一个 "c"得到 "abac"。 str2 = "cab" 是 "cabac" 的一个子串,因为我们可以删去 "cabac" 末尾的 "ac" 得到 "cab"。 最终我们给出的答案是满足上述属性的最短字符串。
提示:
1 <= str1.length, str2.length <= 1000 str1 和 str2 都由小写英文字母组成。
思路:
动态规划 令 dp[i][j] 表示 str1[:i] 和 str2[:j] 的最长相同子序列的长度 dp[i][j] = dp[i - 1][j - 1] + 1, if str1[i - 1] == str2[j - 1] dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]) 然后按照 dp 中的路径将最长相同子序列还原 最后将不属于最长相同子序列中的字符拼接即可 时间复杂度O(mn), 空间复杂度O(mn)
代码: C++:
class Solution
{
public:
string shortestCommonSupersequence(string str1, string str2)
{
int m = str1.size(), n = str2.size(), a = m, b = n, p = 0, q = 0;
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
for (int i = 1; i <= m; i++) for (int j = 1; j <= n; j++) dp[i][j] = str1[i - 1] == str2[j - 1] ? dp[i - 1][j - 1] + 1 : max(dp[i][j - 1], dp[i - 1][j]);
string lcs = "", result = "";
while (a and b)
{
if (str1[a - 1] == str2[b - 1])
{
lcs += str1[a-- - 1];
--b;
}
else if (dp[a - 1][b] > dp[a][b - 1]) --a;
else --b;
}
for (auto c = lcs.rbegin(); c != lcs.rend(); c++)
{
while (p < m and str1[p] != *c) result += str1[p++];
while (q < n and str2[q] != *c) result += str2[q++];
result += *c;
++p;
++q;
}
while (p < m) result += str1[p++];
while (q < n) result += str2[q++];
return result;
}
};
Java:
class Solution {
public String shortestCommonSupersequence(String str1, String str2) {
int m = str1.length(), n = str2.length(), a = m, b = n, p = 0, q = 0, dp[][] = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) for (int j = 1; j <= n; j++) dp[i][j] = str1.charAt(i - 1) == str2.charAt(j - 1) ? dp[i - 1][j - 1] + 1 : Math.max(dp[i][j - 1], dp[i - 1][j]);
StringBuilder lcs = new StringBuilder(), result = new StringBuilder();
while (a > 0 && b > 0) {
if (str1.charAt(a - 1) == str2.charAt(b - 1)) {
lcs.append(str1.charAt(a-- - 1));
--b;
} else if (dp[a - 1][b] > dp[a][b - 1]) --a;
else --b;
}
for (char c : lcs.reverse().toString().toCharArray()) {
while (p < m && str1.charAt(p) != c) result.append(str1.charAt(p++));
while (q < n && str2.charAt(q) != c) result.append(str2.charAt(q++));
result.append(c);
++p;
++q;
}
while (p < m) result.append(str1.charAt(p++));
while (q < n) result.append(str2.charAt(q++));
return result.toString();
}
}
Python:
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
m, n, lcs, result = len(str1), len(str2), '', ''
dp, a, b, p, q = [[0] * (n + 1) for _ in range(m + 1)], m, n, 0, 0
for i in range(1, m + 1):
for j in range(1, n + 1):
dp[i][j] = dp[i - 1][j - 1] + 1 if str1[i - 1] == str2[j - 1] else max(dp[i][j - 1], dp[i - 1][j])
while a and b:
if str1[a - 1] == str2[b - 1]:
lcs += str1[a - 1]
a -= 1
b -= 1
elif dp[a - 1][b] > dp[a][b - 1]:
a -= 1
else:
b -= 1
for c in lcs[::-1]:
while p < m and str1[p] != c:
result += str1[p]
p += 1
while q < n and str2[q] != c:
result += str2[q]
q += 1
result += c
p += 1
q += 1
return result + str1[p:] + str2[q:]