diff --git a/fv3net/diagnostics/sklearn_model_performance/plotting_sklearn.py b/fv3net/diagnostics/sklearn_model_performance/plotting_sklearn.py index fbea6208ae..a09dc76ed9 100644 --- a/fv3net/diagnostics/sklearn_model_performance/plotting_sklearn.py +++ b/fv3net/diagnostics/sklearn_model_performance/plotting_sklearn.py @@ -107,7 +107,7 @@ def make_all_plots(ds_pred, ds_target, ds_hires, grid, output_dir): dataset_labels=["prediction", "target C48"], grid=grid, ) - figs = map_plot_ml_frac_of_total(ds, grid) + figs = map_plot_ml_frac_of_total(ds) fig_pe_ml, fig_pe_ml_frac, fig_heating_ml, fig_heating_ml_frac = figs fig_pe_ml.savefig(os.path.join(output_dir, "dQ2_vertical_integral_map.png")) fig_pe_ml_frac.savefig(os.path.join(output_dir, "dQ2_frac_of_PE.png")) @@ -505,6 +505,8 @@ def map_plot_ml_frac_of_total(ds): fig_pe_ml_frac = plot_cube( mappable_var(ds, "net_precipitation_ml_frac_of_total").mean(INIT_TIME_DIM), col="dataset", + vmin=-1, + vmax=1, )[0] fig_pe_ml_frac.suptitle("P-E: ML prediction as fraction of total") @@ -515,6 +517,8 @@ def map_plot_ml_frac_of_total(ds): fig_heating_ml_frac = plot_cube( mappable_var(ds, "net_heating_ml_frac_of_total").mean(INIT_TIME_DIM), col="dataset", + vmin=-1, + vmax=1, )[0] fig_heating_ml_frac.suptitle("heating: ML prediction as fraction of total")