forked from aurora95/Keras-FCN
-
Notifications
You must be signed in to change notification settings - Fork 8
/
SegDataGenerator.py
518 lines (460 loc) · 21.9 KB
/
SegDataGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
from keras.preprocessing.image import *
from keras.applications.imagenet_utils import preprocess_input
from keras import backend as K
from PIL import Image
import numpy as np
import os
def center_crop(x, center_crop_size, data_format, **kwargs):
if data_format == 'channels_first':
centerh, centerw = x.shape[1] // 2, x.shape[2] // 2
elif data_format == 'channels_last':
centerh, centerw = x.shape[0] // 2, x.shape[1] // 2
lh, lw = center_crop_size[0] // 2, center_crop_size[1] // 2
rh, rw = center_crop_size[0] - lh, center_crop_size[1] - lw
h_start, h_end = centerh - lh, centerh + rh
w_start, w_end = centerw - lw, centerw + rw
if data_format == 'channels_first':
return x[:, h_start:h_end, w_start:w_end]
elif data_format == 'channels_last':
return x[h_start:h_end, w_start:w_end, :]
def pair_center_crop(x, y, center_crop_size, data_format, **kwargs):
if data_format == 'channels_first':
centerh, centerw = x.shape[1] // 2, x.shape[2] // 2
elif data_format == 'channels_last':
centerh, centerw = x.shape[0] // 2, x.shape[1] // 2
lh, lw = center_crop_size[0] // 2, center_crop_size[1] // 2
rh, rw = center_crop_size[0] - lh, center_crop_size[1] - lw
h_start, h_end = centerh - lh, centerh + rh
w_start, w_end = centerw - lw, centerw + rw
if data_format == 'channels_first':
return x[:, h_start:h_end, w_start:w_end], \
y[:, h_start:h_end, w_start:w_end]
elif data_format == 'channels_last':
return x[h_start:h_end, w_start:w_end, :], \
y[h_start:h_end, w_start:w_end, :]
def random_crop(x, random_crop_size, data_format, sync_seed=None, **kwargs):
np.random.seed(sync_seed)
if data_format == 'channels_first':
h, w = x.shape[1], x.shape[2]
elif data_format == 'channels_last':
h, w = x.shape[0], x.shape[1]
rangeh = (h - random_crop_size[0]) // 2
rangew = (w - random_crop_size[1]) // 2
offseth = 0 if rangeh == 0 else np.random.randint(rangeh)
offsetw = 0 if rangew == 0 else np.random.randint(rangew)
h_start, h_end = offseth, offseth + random_crop_size[0]
w_start, w_end = offsetw, offsetw + random_crop_size[1]
if data_format == 'channels_first':
return x[:, h_start:h_end, w_start:w_end]
elif data_format == 'channels_last':
return x[h_start:h_end, w_start:w_end, :]
def pair_random_crop(x, y, random_crop_size, data_format, sync_seed=None, **kwargs):
np.random.seed(sync_seed)
if data_format == 'channels_first':
h, w = x.shape[1], x.shape[2]
elif data_format == 'channels_last':
h, w = x.shape[0], x.shape[1]
rangeh = (h - random_crop_size[0]) // 2
rangew = (w - random_crop_size[1]) // 2
offseth = 0 if rangeh == 0 else np.random.randint(rangeh)
offsetw = 0 if rangew == 0 else np.random.randint(rangew)
h_start, h_end = offseth, offseth + random_crop_size[0]
w_start, w_end = offsetw, offsetw + random_crop_size[1]
if data_format == 'channels_first':
return x[:, h_start:h_end, w_start:w_end], y[:, h_start:h_end, h_start:h_end]
elif data_format == 'channels_last':
return x[h_start:h_end, w_start:w_end, :], y[h_start:h_end, w_start:w_end, :]
class SegDirectoryIterator(Iterator):
'''
Users need to ensure that all files exist.
Label images should be png images where pixel values represents class number.
find images -name *.jpg > images.txt
find labels -name *.png > labels.txt
for a file name 2011_002920.jpg, each row should contain 2011_002920
file_path: location of train.txt, or val.txt in PASCAL VOC2012 format,
listing image file path components without extension
data_dir: location of image files referred to by file in file_path
label_dir: location of label files
data_suffix: image file extension, such as `.jpg` or `.png`
label_suffix: label file suffix, such as `.png`, or `.npy`
loss_shape: shape to use when applying loss function to the label data
'''
def __init__(self, file_path, seg_data_generator,
data_dir, data_suffix,
label_dir, label_suffix, classes, ignore_label=255,
crop_mode='none', label_cval=255, pad_size=None,
target_size=None, color_mode='rgb',
data_format='default', class_mode='sparse',
batch_size=1, shuffle=True, seed=None,
save_to_dir=None, save_prefix='', save_format='jpeg',
loss_shape=None):
if data_format == 'default':
data_format = K.image_data_format()
self.file_path = file_path
self.data_dir = data_dir
self.data_suffix = data_suffix
self.label_suffix = label_suffix
self.label_dir = label_dir
self.classes = classes
self.seg_data_generator = seg_data_generator
self.target_size = tuple(target_size)
self.ignore_label = ignore_label
self.crop_mode = crop_mode
self.label_cval = label_cval
self.pad_size = pad_size
if color_mode not in {'rgb', 'grayscale'}:
raise ValueError('Invalid color mode:', color_mode,
'; expected "rgb" or "grayscale".')
self.color_mode = color_mode
self.data_format = data_format
self.nb_label_ch = 1
self.loss_shape = loss_shape
if (self.label_suffix == '.npy') or (self.label_suffix == 'npy'):
self.label_file_format = 'npy'
else:
self.label_file_format = 'img'
if target_size:
if self.color_mode == 'rgb':
if self.data_format == 'channels_last':
self.image_shape = self.target_size + (3,)
else:
self.image_shape = (3,) + self.target_size
else:
if self.data_format == 'channels_last':
self.image_shape = self.target_size + (1,)
else:
self.image_shape = (1,) + self.target_size
if self.data_format == 'channels_last':
self.label_shape = self.target_size + (self.nb_label_ch,)
else:
self.label_shape = (self.nb_label_ch,) + self.target_size
elif batch_size != 1:
raise ValueError(
'Batch size must be 1 when target image size is undetermined')
else:
self.image_shape = None
self.label_shape = None
if class_mode not in {'sparse', None}:
raise ValueError('Invalid class_mode:', class_mode,
'; expected one of '
'"sparse", or None.')
self.class_mode = class_mode
if save_to_dir:
self.palette = None
self.save_to_dir = save_to_dir
self.save_prefix = save_prefix
self.save_format = save_format
white_list_formats = {'png', 'jpg', 'jpeg', 'bmp', 'npy'}
# build lists for data files and label files
self.data_files = []
self.label_files = []
fp = open(file_path)
lines = fp.readlines()
fp.close()
self.nb_sample = len(lines)
for line in lines:
line = line.strip('\n')
self.data_files.append(line + data_suffix)
self.label_files.append(line + label_suffix)
super(SegDirectoryIterator, self).__init__(
self.nb_sample, batch_size, shuffle, seed)
def next(self):
with self.lock:
index_array, current_index, current_batch_size = next(
self.index_generator)
# The transformation of images is not under thread lock so it can be
# done in parallel
if self.target_size:
# TODO(ahundt) make dtype properly configurable
batch_x = np.zeros((current_batch_size,) + self.image_shape)
if self.loss_shape is None and self.label_file_format is 'img':
batch_y = np.zeros((current_batch_size,) + self.label_shape,
dtype=int)
elif self.loss_shape is None:
batch_y = np.zeros((current_batch_size,) + self.label_shape)
else:
batch_y = np.zeros((current_batch_size,) + self.loss_shape,
dtype=np.uint8)
grayscale = self.color_mode == 'grayscale'
# build batch of image data and labels
for i, j in enumerate(index_array):
data_file = self.data_files[j]
label_file = self.label_files[j]
img_file_format = 'img'
img = load_img(os.path.join(self.data_dir, data_file),
grayscale=grayscale, target_size=None)
label_filepath = os.path.join(self.label_dir, label_file)
if self.label_file_format == 'npy':
y = np.load(label_filepath)
else:
label = Image.open(label_filepath)
if self.save_to_dir and self.palette is None:
self.palette = label.palette
# do padding
if self.target_size:
if self.crop_mode != 'none':
x = img_to_array(img, data_format=self.data_format)
if self.label_file_format is not 'npy':
y = img_to_array(
label, data_format=self.data_format).astype(int)
img_w, img_h = img.size
if self.pad_size:
pad_w = max(self.pad_size[1] - img_w, 0)
pad_h = max(self.pad_size[0] - img_h, 0)
else:
pad_w = max(self.target_size[1] - img_w, 0)
pad_h = max(self.target_size[0] - img_h, 0)
if self.data_format == 'channels_first':
x = np.lib.pad(x, ((0, 0), (pad_h // 2, pad_h - pad_h // 2), (pad_w // 2, pad_w - pad_w // 2)), 'constant', constant_values=0.)
y = np.lib.pad(y, ((0, 0), (pad_h // 2, pad_h - pad_h // 2), (pad_w // 2, pad_w - pad_w // 2)),
'constant', constant_values=self.label_cval)
elif self.data_format == 'channels_last':
x = np.lib.pad(x, ((pad_h // 2, pad_h - pad_h // 2), (pad_w // 2, pad_w - pad_w // 2), (0, 0)), 'constant', constant_values=0.)
y = np.lib.pad(y, ((pad_h // 2, pad_h - pad_h // 2), (pad_w // 2, pad_w - pad_w // 2), (0, 0)), 'constant', constant_values=self.label_cval)
else:
x = img_to_array(img.resize((self.target_size[1], self.target_size[0]),
Image.BILINEAR),
data_format=self.data_format)
if self.label_file_format is not 'npy':
y = img_to_array(label.resize((self.target_size[1], self.target_size[
0]), Image.NEAREST), data_format=self.data_format).astype(int)
else:
print('ERROR: resize not implemented for label npy file')
if self.target_size is None:
batch_x = np.zeros((current_batch_size,) + x.shape)
if self.loss_shape is not None:
batch_y = np.zeros((current_batch_size,) + self.loss_shape)
else:
batch_y = np.zeros((current_batch_size,) + y.shape)
x, y = self.seg_data_generator.random_transform(x, y)
x = self.seg_data_generator.standardize(x)
if self.ignore_label:
y[np.where(y == self.ignore_label)] = self.classes
if self.loss_shape is not None:
y = np.reshape(y, self.loss_shape)
batch_x[i] = x
batch_y[i] = y
# optionally save augmented images to disk for debugging purposes
if self.save_to_dir:
for i in range(current_batch_size):
img = array_to_img(batch_x[i], self.data_format, scale=True)
label = batch_y[i][:, :, 0].astype('uint8')
label[np.where(label == self.classes)] = self.ignore_label
label = Image.fromarray(label, mode='P')
label.palette = self.palette
fname = '{prefix}_{index}_{hash}'.format(prefix=self.save_prefix,
index=current_index + i,
hash=np.random.randint(1e4))
img.save(os.path.join(self.save_to_dir, 'img_' +
fname + '.{format}'.format(format=self.save_format)))
label.save(os.path.join(self.save_to_dir,
'label_' + fname + '.png'))
# return
batch_x = preprocess_input(batch_x)
if self.class_mode == 'sparse':
return batch_x, batch_y
else:
return batch_x
class SegDataGenerator(object):
def __init__(self,
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
channelwise_center=False,
rotation_range=0.,
width_shift_range=0.,
height_shift_range=0.,
shear_range=0.,
zoom_range=0.,
zoom_maintain_shape=True,
channel_shift_range=0.,
fill_mode='constant',
cval=0.,
label_cval=255,
crop_mode='none',
crop_size=(0, 0),
pad_size=None,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
data_format='default'):
if data_format == 'default':
data_format = K.image_data_format()
self.__dict__.update(locals())
self.mean = None
self.ch_mean = None
self.std = None
self.principal_components = None
self.rescale = rescale
if data_format not in {'channels_last', 'channels_first'}:
raise Exception('data_format should be channels_last (channel after row and '
'column) or channels_first (channel before row and column). '
'Received arg: ', data_format)
if crop_mode not in {'none', 'random', 'center'}:
raise Exception('crop_mode should be "none" or "random" or "center" '
'Received arg: ', crop_mode)
self.data_format = data_format
if data_format == 'channels_first':
self.channel_index = 1
self.row_index = 2
self.col_index = 3
if data_format == 'channels_last':
self.channel_index = 3
self.row_index = 1
self.col_index = 2
if np.isscalar(zoom_range):
self.zoom_range = [1 - zoom_range, 1 + zoom_range]
elif len(zoom_range) == 2:
self.zoom_range = [zoom_range[0], zoom_range[1]]
else:
raise Exception('zoom_range should be a float or '
'a tuple or list of two floats. '
'Received arg: ', zoom_range)
def flow_from_directory(self, file_path, data_dir, data_suffix,
label_dir, label_suffix, classes,
ignore_label=255,
target_size=None, color_mode='rgb',
class_mode='sparse',
batch_size=32, shuffle=True, seed=None,
save_to_dir=None, save_prefix='', save_format='jpeg',
loss_shape=None):
if self.crop_mode == 'random' or self.crop_mode == 'center':
target_size = self.crop_size
return SegDirectoryIterator(
file_path, self,
data_dir=data_dir, data_suffix=data_suffix,
label_dir=label_dir, label_suffix=label_suffix,
classes=classes, ignore_label=ignore_label,
crop_mode=self.crop_mode, label_cval=self.label_cval,
pad_size=self.pad_size,
target_size=target_size, color_mode=color_mode,
data_format=self.data_format, class_mode=class_mode,
batch_size=batch_size, shuffle=shuffle, seed=seed,
save_to_dir=save_to_dir, save_prefix=save_prefix,
save_format=save_format,
loss_shape=loss_shape)
def standardize(self, x):
if self.rescale:
x *= self.rescale
# x is a single image, so it doesn't have image number at index 0
img_channel_index = self.channel_index - 1
if self.samplewise_center:
x -= np.mean(x, axis=img_channel_index, keepdims=True)
if self.samplewise_std_normalization:
x /= (np.std(x, axis=img_channel_index, keepdims=True) + 1e-7)
if self.featurewise_center:
x -= self.mean
if self.featurewise_std_normalization:
x /= (self.std + 1e-7)
if self.channelwise_center:
x -= self.ch_mean
return x
def random_transform(self, x, y):
# x is a single image, so it doesn't have image number at index 0
img_row_index = self.row_index - 1
img_col_index = self.col_index - 1
img_channel_index = self.channel_index - 1
if self.crop_mode == 'none':
crop_size = (x.shape[img_row_index], x.shape[img_col_index])
else:
crop_size = self.crop_size
assert x.shape[img_row_index] == y.shape[img_row_index] and x.shape[img_col_index] == y.shape[
img_col_index], 'DATA ERROR: Different shape of data and label!\ndata shape: %s, label shape: %s' % (str(x.shape), str(y.shape))
# use composition of homographies to generate final transform that
# needs to be applied
if self.rotation_range:
theta = np.pi / 180 * \
np.random.uniform(-self.rotation_range, self.rotation_range)
else:
theta = 0
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
if self.height_shift_range:
# * x.shape[img_row_index]
tx = np.random.uniform(-self.height_shift_range,
self.height_shift_range) * crop_size[0]
else:
tx = 0
if self.width_shift_range:
# * x.shape[img_col_index]
ty = np.random.uniform(-self.width_shift_range,
self.width_shift_range) * crop_size[1]
else:
ty = 0
translation_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
if self.shear_range:
shear = np.random.uniform(-self.shear_range, self.shear_range)
else:
shear = 0
shear_matrix = np.array([[1, -np.sin(shear), 0],
[0, np.cos(shear), 0],
[0, 0, 1]])
if self.zoom_range[0] == 1 and self.zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(
self.zoom_range[0], self.zoom_range[1], 2)
if self.zoom_maintain_shape:
zy = zx
zoom_matrix = np.array([[zx, 0, 0],
[0, zy, 0],
[0, 0, 1]])
transform_matrix = np.dot(
np.dot(np.dot(rotation_matrix, translation_matrix), shear_matrix), zoom_matrix)
h, w = x.shape[img_row_index], x.shape[img_col_index]
transform_matrix = transform_matrix_offset_center(
transform_matrix, h, w)
x = apply_transform(x, transform_matrix, img_channel_index,
fill_mode=self.fill_mode, cval=self.cval)
y = apply_transform(y, transform_matrix, img_channel_index,
fill_mode='constant', cval=self.label_cval)
if self.channel_shift_range != 0:
x = random_channel_shift(
x, self.channel_shift_range, img_channel_index)
if self.horizontal_flip:
if np.random.random() < 0.5:
x = flip_axis(x, img_col_index)
y = flip_axis(y, img_col_index)
if self.vertical_flip:
if np.random.random() < 0.5:
x = flip_axis(x, img_row_index)
y = flip_axis(y, img_row_index)
if self.crop_mode == 'center':
x, y = pair_center_crop(x, y, self.crop_size, self.data_format)
elif self.crop_mode == 'random':
x, y = pair_random_crop(x, y, self.crop_size, self.data_format)
# TODO:
# channel-wise normalization
# barrel/fisheye
return x, y
def fit(self, X,
augment=False,
rounds=1,
seed=None):
'''Required for featurewise_center and featurewise_std_normalization
# Arguments
X: Numpy array, the data to fit on.
augment: whether to fit on randomly augmented samples
rounds: if `augment`,
how many augmentation passes to do over the data
seed: random seed.
'''
X = np.copy(X)
if augment:
aX = np.zeros(tuple([rounds * X.shape[0]] + list(X.shape)[1:]))
for r in range(rounds):
for i in range(X.shape[0]):
aX[i + r * X.shape[0]] = self.random_transform(X[i])
X = aX
if self.featurewise_center:
self.mean = np.mean(X, axis=0)
X -= self.mean
if self.featurewise_std_normalization:
self.std = np.std(X, axis=0)
X /= (self.std + 1e-7)
def set_ch_mean(self, ch_mean):
self.ch_mean = ch_mean