-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
95 lines (77 loc) · 2.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 6 14:04:12 2019
@author: Adam
"""
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import time
import sklearn.metrics as skm
from math import e
from model import train_model
import variables as var
###################################### data fns #############################################
def import_data(dataset):
# redacted
pass
# arranges normal data into a sliding window of length seq_len
def split_data(sequence, seq_len):
X = []
for i in range(len(sequence)):
end_idx = i + seq_len
# check if reached the end of sequence
if end_idx > len(sequence):
break
seq_x = sequence[i:end_idx]
X.append(seq_x)
return np.array(X)
#create dataloaders of (x,y) data and labels
def create_train_set(normal_x):
#split into train and validation sets
val_size = int(0.15*len(normal_x))
train_dataset, val_dataset = random_split(normal_x, [val_size,len(normal_x)-val_size])
#create dataloaders for iteration
train_loader = DataLoader(dataset=train_dataset, batch_size = var.batch_size, shuffle = True)
val_loader = DataLoader(dataset=val_dataset, batch_size= var.batch_size, shuffle = True)
return train_loader, val_loader
########################### other fns ###################################
def threshold_errors(errors, percentile, error_path):
#finding the reconstruction error for each test example from attack data
real_err = torch.load(error_path)
if percentile < 100:
threshold = np.percentile(real_err, percentile)
elif percentile >= 100:
threshold = (percentile/100)*max(real_err)
predicted_labels = np.zeros_like(errors)
for i in range(len(errors)):
if errors[i] > threshold:
predicted_labels[i] = 1
return predicted_labels
def prob_errors(errors,percentile,error_path):
real_err = torch.load(error_path)
if percentile < 100:
threshold = np.percentile(real_err, percentile)
elif percentile >= 100:
threshold = (percentile/100)*max(real_err)
predicted_labels = 1/(1+e**(1-errors/threshold))
return predicted_labels
#function for plotting regions of labels
def heads_tails(labels):
heads = []
tails = []
for i in range(len(labels)-1):
if labels[i] == 1:
if labels[i-1] == 0:
heads.append(i)
if labels[i+1] == 0:
tails.append(i)
return heads, tails
#score metrics
def metrics(ytrue, ypred):
ypred = (ypred > 0).astype(int)
return skm.precision_score(ytrue,ypred), skm.recall_score(ytrue,ypred), skm.f1_score(ytrue,ypred)