We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
在new_env_mas.py文件中,self.state_space = Box(low=0, high=1, shape=[self.dim_state, ], dtype=np.float32, seed=self.seed)这句代码是定义智能体的状态空间。但是这样的话每个智能体的观测就都是一样的对吧。假如我现在有两个智能体,观测是给定的两列数据,也就是每个智能体的观测都对应一列数据,那这样的话每个智能体的观测范围就是不一致的。比如: obs_space1 = Box(low=self.data1.min(), high=self.data1.max(), shape=(self.dim_obs,), dtype=np.float32, seed=self.seed) obs_space2 = Box(low=self.data2.min(), high=self.data2.max(), shape=(self.dim_obs,), dtype=np.float32, seed=self.seed) 那请问这样的智能体该如何在new_env_mas.py文件中定义观测空间呢?
The text was updated successfully, but these errors were encountered:
目前new_env_mas.py里给出的针对同质智能体(所有智能体的各种属性都一样)的示例。但是你提到的情况应该没有影响,只要每个智能体的obs_shape一样,在外部应该是不区分取值范围的。如果你需要在外部访问每个智能体的观测范围,不妨在这个文件中新增self.obs_space1,self.obs_space2这样的成员变量。
Sorry, something went wrong.
为啥tensorborad这些图并没有展示出来呢?
貌似是因为纵坐标显示范围太大
No branches or pull requests
在new_env_mas.py文件中,self.state_space = Box(low=0, high=1, shape=[self.dim_state, ], dtype=np.float32, seed=self.seed)这句代码是定义智能体的状态空间。但是这样的话每个智能体的观测就都是一样的对吧。假如我现在有两个智能体,观测是给定的两列数据,也就是每个智能体的观测都对应一列数据,那这样的话每个智能体的观测范围就是不一致的。比如:
obs_space1 = Box(low=self.data1.min(), high=self.data1.max(), shape=(self.dim_obs,), dtype=np.float32, seed=self.seed)
obs_space2 = Box(low=self.data2.min(), high=self.data2.max(), shape=(self.dim_obs,), dtype=np.float32, seed=self.seed)
那请问这样的智能体该如何在new_env_mas.py文件中定义观测空间呢?
The text was updated successfully, but these errors were encountered: