From 344ff6be5ccdd5f6bba3c51ceb4ca597aeba2fa4 Mon Sep 17 00:00:00 2001 From: "Brandon T. Willard" Date: Mon, 9 May 2022 00:25:52 -0500 Subject: [PATCH] Fix seeding issues in tests.tensor.nnet.test_basic --- tests/tensor/nnet/test_basic.py | 157 ++++++++++++++++++-------------- 1 file changed, 87 insertions(+), 70 deletions(-) diff --git a/tests/tensor/nnet/test_basic.py b/tests/tensor/nnet/test_basic.py index 1b827ef138..278325b488 100644 --- a/tests/tensor/nnet/test_basic.py +++ b/tests/tensor/nnet/test_basic.py @@ -108,7 +108,8 @@ class TestSoftmax(utt.InferShapeTester): @pytest.mark.parametrize("axis", [None, 0, 1, 2, 3, -1, -2]) def test_perform(self, axis): x = tensor4("x") - xv = np.random.standard_normal((2, 3, 4, 5)).astype(config.floatX) + rng = np.random.default_rng(utt.fetch_seed()) + xv = rng.standard_normal((2, 3, 4, 5)).astype(config.floatX) f = aesara.function([x], softmax(x, axis=axis)) assert np.allclose(f(xv), sp.softmax(xv, axis=axis)) @@ -119,11 +120,13 @@ def test_grad(self, axis, column): def f(a): return softmax(a, axis=axis)[:, column] - utt.verify_grad(f, [np.random.random((3, 4, 2))]) + rng = np.random.default_rng(utt.fetch_seed()) + utt.verify_grad(f, [rng.random((3, 4, 2))]) def test_infer_shape(self): admat = matrix() - admat_val = np.random.random((3, 4)).astype(config.floatX) + rng = np.random.default_rng(utt.fetch_seed()) + admat_val = rng.random((3, 4)).astype(config.floatX) self._compile_and_check( [admat], [Softmax(axis=-1)(admat)], [admat_val], Softmax ) @@ -132,14 +135,16 @@ def test_vector_perform(self): x = vector() f = aesara.function([x], softmax(x, axis=None)) - xv = np.random.standard_normal((6,)).astype(config.floatX) + rng = np.random.default_rng(utt.fetch_seed()) + xv = rng.standard_normal((6,)).astype(config.floatX) assert np.allclose(f(xv), sp.softmax(xv)) def test_vector_grad(self): def f(a): return softmax(a, axis=None) - utt.verify_grad(f, [np.random.random((4))]) + rng = np.random.default_rng(utt.fetch_seed()) + utt.verify_grad(f, [rng.random((4))]) def test_valid_axis(self): valid_axis_tester(Softmax) @@ -150,22 +155,24 @@ def test_basic(self): def f(a, b): return softmax_with_bias(a, b)[:, 0] - utt.verify_grad(f, [np.random.random((3, 4)), np.random.random((4))]) + rng = np.random.default_rng(utt.fetch_seed()) + + utt.verify_grad(f, [rng.random((3, 4)), rng.random((4))]) def f(a, b): return softmax_with_bias(a, b)[:, 1] - utt.verify_grad(f, [np.random.random((3, 4)), np.random.random((4))]) + utt.verify_grad(f, [rng.random((3, 4)), rng.random((4))]) def f(a, b): return softmax_with_bias(a, b)[:, 2] - utt.verify_grad(f, [np.random.random((3, 4)), np.random.random((4))]) + utt.verify_grad(f, [rng.random((3, 4)), rng.random((4))]) def f(a, b): return softmax_with_bias(a, b)[:, 3] - utt.verify_grad(f, [np.random.random((3, 4)), np.random.random((4))]) + utt.verify_grad(f, [rng.random((3, 4)), rng.random((4))]) def test_broadcast(self): # test that we don't raise an error during optimization for no good @@ -187,8 +194,9 @@ def test_broadcast(self): # print f.maker.fgraph.toposort() def test_softmax_with_bias_trace(self): - a = aesara.shared(np.random.standard_normal((3,)).astype(config.floatX)) - b = aesara.shared(np.float32(np.random.standard_normal())) + rng = np.random.default_rng(utt.fetch_seed()) + a = aesara.shared(rng.standard_normal((3,)).astype(config.floatX)) + b = aesara.shared(np.float32(rng.standard_normal())) sm = softmax(a + b) f = aesara.function([], sm) assert check_stack_trace(f, ops_to_check="last") @@ -196,8 +204,9 @@ def test_softmax_with_bias_trace(self): def test_infer_shape(self): admat = matrix() advec = vector() - admat_val = np.random.random((3, 4)).astype(config.floatX) - advec_val = np.random.random((4)).astype(config.floatX) + rng = np.random.default_rng(utt.fetch_seed()) + admat_val = rng.random((3, 4)).astype(config.floatX) + advec_val = rng.random((4)).astype(config.floatX) self._compile_and_check( [admat, advec], [SoftmaxWithBias()(admat, advec)], @@ -213,20 +222,23 @@ def test_matrix_grad(self, axis, column): def f(a): return logsoftmax(a, axis=axis)[:, column] - utt.verify_grad(f, [np.random.random((3, 4))]) + rng = np.random.default_rng(utt.fetch_seed()) + utt.verify_grad(f, [rng.random((3, 4))]) def test_vector_perform(self): x = vector() f = aesara.function([x], logsoftmax(x, axis=None)) - xv = np.random.standard_normal((6,)).astype(config.floatX) + rng = np.random.default_rng(utt.fetch_seed()) + xv = rng.standard_normal((6,)).astype(config.floatX) assert np.allclose(f(xv), sp.log_softmax(xv)) def test_vector_grad(self): def f(a): return logsoftmax(a, axis=None) - utt.verify_grad(f, [np.random.random((4))]) + rng = np.random.default_rng(utt.fetch_seed()) + utt.verify_grad(f, [rng.random((4,))]) def test_matrix_perform_and_opt(self): m = config.mode @@ -243,9 +255,9 @@ def test_matrix_perform_and_opt(self): cm2 = -at_sum(y * logsm, axis=1) grad_node = grad(cm2.mean(), x) - # create some inputs into a softmax that are large and labels - a = np.exp(10 * np.random.random((5, 10)).astype(config.floatX)) - # create some one-hot coded labels + rng = np.random.default_rng(utt.fetch_seed()) + + a = np.exp(10 * rng.random((5, 10)).astype(config.floatX)) b = np.eye(5, 10).astype(config.floatX) # show equivalence of softmax and exponentiated numerically stable @@ -294,7 +306,7 @@ def test_local_logsoftmax_grad_opt(self, axis): m.check_isfinite = False # some inputs that are large to make the gradient explode in the non # optimized case - rng = np.random.default_rng(98324) + rng = np.random.default_rng(utt.fetch_seed()) a = np.exp(10 * rng.random((5, 10)).astype(config.floatX)) def myfunc(x): @@ -340,8 +352,9 @@ class TestSoftmaxGrad(utt.InferShapeTester): def test_infer_shape(self): admat = matrix() bdmat = matrix() - admat_val = np.random.random((3, 4)).astype(config.floatX) - bdmat_val = np.random.random((3, 4)).astype(config.floatX) + rng = np.random.default_rng(utt.fetch_seed()) + admat_val = rng.random((3, 4)).astype(config.floatX) + bdmat_val = rng.random((3, 4)).astype(config.floatX) self._compile_and_check( [admat, bdmat], [SoftmaxGrad(axis=-1)(admat, bdmat)], @@ -360,14 +373,16 @@ def test_basic(self): def f(a, b): return crossentropy_softmax_1hot_with_bias(a, b, y_idx)[0] - utt.verify_grad(f, [np.random.random((3, 4)), np.random.random((4))]) + rng = np.random.default_rng(utt.fetch_seed()) + + utt.verify_grad(f, [rng.random((3, 4)), rng.random((4))]) y_idx = [0, 1, 3] def f(a): return crossentropy_softmax_1hot(a, y_idx)[0] - utt.verify_grad(f, [np.random.random((3, 4))]) + utt.verify_grad(f, [rng.random((3, 4))]) def test_vector(self): y_idx = [3] @@ -375,7 +390,8 @@ def test_vector(self): def f(a): return crossentropy_softmax_1hot(shape_padleft(a), y_idx)[0] - utt.verify_grad(f, [np.random.random((4))]) + rng = np.random.default_rng(utt.fetch_seed()) + utt.verify_grad(f, [rng.random((4,))]) def test_vectors(self): y_idx = [3] @@ -383,21 +399,20 @@ def test_vectors(self): def f(a, b): return crossentropy_softmax_1hot(shape_padleft(a) + b, y_idx)[0] - utt.verify_grad(f, [np.random.random((4)), np.random.random((4))]) + rng = np.random.default_rng(utt.fetch_seed()) + utt.verify_grad(f, [rng.random((4,)), rng.random((4))]) class TestCrossEntropySoftmax1HotWithBiasDx(utt.InferShapeTester): def test_basic(self): + rng = np.random.default_rng(utt.fetch_seed()) + def ff(class_dtype): def f(sm): # Class indices - y = ( - np.random.default_rng() - .integers(low=0, high=5, size=10) - .astype(class_dtype) - ) + y = rng.integers(low=0, high=5, size=10).astype(class_dtype) return crossentropy_softmax_1hot_with_bias_dx( - np.random.random((10)), + rng.random((10)), sm, y, # Gradient w.r.t. NLL. # Softmax output. ) @@ -405,7 +420,7 @@ def f(sm): return f # Build a random softmax output whose rows sum to 1. - softmax_output = np.random.random((10, 5)) + softmax_output = rng.random((10, 5)) softmax_output /= softmax_output.sum(axis=1).reshape(10, 1) for dtype in ["uint8", "int8", "uint64", "int64"]: utt.verify_grad(ff(dtype), [softmax_output]) @@ -463,13 +478,13 @@ def test_grads(self): n_classes = 5 n_samples = 3 + rng = np.random.default_rng(utt.fetch_seed()) + # First test gradient when getting a gradient on the NLL output. def grad_on_nll_dtype(dtype): def grad_on_nll(x, b): - y_idx = ( - np.random.default_rng() - .integers(low=0, high=n_classes, size=n_samples) - .astype(dtype) + y_idx = rng.integers(low=0, high=n_classes, size=n_samples).astype( + dtype ) return self.op(x, b, y_idx=y_idx)[0] @@ -479,8 +494,8 @@ def grad_on_nll(x, b): utt.verify_grad( grad_on_nll_dtype(dtype), [ - np.random.random((n_samples, n_classes)), - np.random.random((n_classes)), + rng.random((n_samples, n_classes)), + rng.random((n_classes)), ], ) @@ -489,14 +504,12 @@ def grad_on_softmax(x, b): return self.op( x, b, - y_idx=np.random.default_rng().integers( - low=0, high=n_classes, size=n_samples - ), + y_idx=rng.integers(low=0, high=n_classes, size=n_samples), )[1] utt.verify_grad( grad_on_softmax, - [np.random.random((n_samples, n_classes)), np.random.random((n_classes))], + [rng.random((n_samples, n_classes)), rng.random((n_classes))], ) def test_infer_shape(self): @@ -534,7 +547,8 @@ def test_prepend_constant(self): x = matrix("x") y = Prepend_scalar_constant_to_each_row(4.0)(x) f = aesara.function([x], y) - m = np.random.random((3, 5)).astype(config.floatX) + rng = np.random.default_rng(utt.fetch_seed()) + m = rng.random((3, 5)).astype(config.floatX) my = f(m) assert my.shape == (3, 6) assert np.all(my[:, 0] == 4.0) @@ -608,7 +622,8 @@ def test_grad(self): def oplike(x): return op(x, [0, 1]) - utt.verify_grad(oplike, [x_val], rng=np.random) + rng = np.random.default_rng(utt.fetch_seed()) + utt.verify_grad(oplike, [x_val], rng=rng) def test_infer_shape(self): admat = matrix() @@ -1023,7 +1038,6 @@ class TestSoftmaxOpt: # def setup_method(self): - self.rng = np.random.default_rng(utt.fetch_seed()) self.mode = aesara.compile.mode.get_default_mode() self.mode = self.mode.including("canonicalize") @@ -1049,7 +1063,8 @@ def test_basic(self, axis): assert len(f_ops) == 1 assert isinstance(f_ops[0], Softmax) - c_val = self.rng.random((3, 4)).astype(config.floatX) + rng = np.random.default_rng(utt.fetch_seed()) + c_val = rng.random((3, 4)).astype(config.floatX) assert np.allclose(f(c_val), sp.softmax(c_val, axis=axis)) @pytest.mark.parametrize("axis", [None, 0, 1, 2, -1, -2, -3, (0, 1, 2)]) @@ -1067,7 +1082,8 @@ def test_basic_keepdims(self, axis): assert len(f_ops) == 1 assert isinstance(f_ops[0], Softmax) - c_val = self.rng.random((3, 4, 5)).astype(config.floatX) + rng = np.random.default_rng(utt.fetch_seed()) + c_val = rng.random((3, 4, 5)).astype(config.floatX) assert np.allclose(f(c_val), sp.softmax(c_val, axis=axis)) @pytest.mark.skip(reason="Optimization not enabled for the moment") @@ -1086,7 +1102,8 @@ def test_grad(self): assert isinstance(g_ops[0], Softmax) assert isinstance(g_ops[1], SoftmaxGrad) - g(self.rng.random((3, 4)), self.rng.uniform(0.5, 1, (3, 4))) + rng = np.random.default_rng(utt.fetch_seed()) + g(rng.random((3, 4)), rng.uniform(0.5, 1, (3, 4))) def test_transpose_basic(self): # this should be a transposed softmax @@ -1196,14 +1213,13 @@ def test_stabilize_log_softmax(): # call the function so debug mode can verify the optimized # version matches the unoptimized version - rng = np.random.default_rng([2012, 8, 22]) + rng = np.random.default_rng(utt.fetch_seed()) f(np.cast[config.floatX](rng.random((2, 3)))) def test_relu(): x = matrix("x") - seed = utt.fetch_seed() - rng = np.random.default_rng(seed) + rng = np.random.default_rng(utt.fetch_seed()) X = rng.standard_normal((20, 30)).astype(config.floatX) # test the base case, without custom alpha value @@ -1223,11 +1239,12 @@ def test_relu(): ) y = relu(x, alpha).eval({x: X, alpha: A}) assert np.allclose(y, np.where(X > 0, X, A * X), rtol=3e-5) + # test that for alpha of ndarray don't cause upcast. x = matrix("x", dtype="float32") - rng = np.random.default_rng(seed) X = rng.standard_normal((20, 30)).astype("float32") alpha = np.asarray(0.123, dtype="float32") + y = relu(x, alpha).eval({x: X}) assert np.allclose(y, np.where(X > 0, X, alpha * X)) assert y.dtype == "float32" @@ -1243,9 +1260,11 @@ def test_h_softmax(): h_softmax_level2_size = 3 output_size = h_softmax_level1_size * h_softmax_level2_size + rng = np.random.default_rng(utt.fetch_seed()) + # First level of h_softmax W1 = np.asarray( - np.random.normal(size=(input_size, h_softmax_level1_size)), dtype=config.floatX + rng.normal(size=(input_size, h_softmax_level1_size)), dtype=config.floatX ) W1 = aesara.shared(W1) b1 = aesara.shared( @@ -1254,9 +1273,7 @@ def test_h_softmax(): # Second level of h_softmax W2 = np.asarray( - np.random.normal( - size=(h_softmax_level1_size, input_size, h_softmax_level2_size) - ), + rng.normal(size=(h_softmax_level1_size, input_size, h_softmax_level2_size)), dtype=config.floatX, ) W2 = aesara.shared(W2) @@ -1300,8 +1317,8 @@ def test_h_softmax(): fun_output_tg = aesara.function([x, y], y_hat_tg) fun_output = aesara.function([x], y_hat_all) - x_mat = np.random.normal(size=(batch_size, input_size)).astype(config.floatX) - y_mat = np.random.default_rng().integers(0, output_size, batch_size).astype("int32") + x_mat = rng.normal(size=(batch_size, input_size)).astype(config.floatX) + y_mat = rng.integers(0, output_size, batch_size).astype("int32") tg_output = fun_output_tg(x_mat, y_mat) all_outputs = fun_output(x_mat) @@ -1315,8 +1332,7 @@ def test_h_softmax(): def test_elu(): x = matrix("x") - seed = utt.fetch_seed() - rng = np.random.default_rng(seed) + rng = np.random.default_rng(utt.fetch_seed()) X = rng.standard_normal((20, 30)).astype(config.floatX) # test the base case, without custom alpha value @@ -1334,8 +1350,7 @@ def test_selu(): scale = 1.0507009873554804934193349852946 x = matrix("x") - seed = utt.fetch_seed() - rng = np.random.default_rng(seed) + rng = np.random.default_rng(utt.fetch_seed()) X = rng.standard_normal((20, 30)).astype(config.floatX) y = selu(x).eval({x: X}) @@ -1371,11 +1386,6 @@ def test_binary_crossentropy_reshape(): class TestSigmoidBinaryCrossentropy: - def _get_test_inputs(self, n=50): - pred, target = np.random.standard_normal((2, n)).astype(config.floatX) - # apply sigmoid to target, but not pred - return [pred, 1 / (1 + np.exp(-target))] - def test_matches_binary_crossentropy(self): # Test sigmoid_binary_crossentropy(p, t) == # binary_crossentropy(sigmoid(p), t). @@ -1388,11 +1398,18 @@ def test_matches_binary_crossentropy(self): test_val = sigmoid_binary_crossentropy(pred, target) f_test = aesara.function(inputs, test_val) - test_inputs = self._get_test_inputs() + rng = np.random.default_rng(utt.fetch_seed()) + pred, target = rng.standard_normal((2, 50)).astype(config.floatX) + test_inputs = [pred, 1 / (1 + np.exp(-target))] + utt.assert_allclose(f_reference(*test_inputs), f_test(*test_inputs)) def test_grad(self): - utt.verify_grad(sigmoid_binary_crossentropy, self._get_test_inputs()) + rng = np.random.default_rng(utt.fetch_seed()) + pred, target = rng.standard_normal((2, 50)).astype(config.floatX) + test_inputs = [pred, 1 / (1 + np.exp(-target))] + + utt.verify_grad(sigmoid_binary_crossentropy, test_inputs) def test_confusion_matrix():