-
Notifications
You must be signed in to change notification settings - Fork 640
/
weight_init_tensorflow.py
123 lines (112 loc) · 6.37 KB
/
weight_init_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import tensorflow as tf
import os
from tensorflow.examples.tutorials.mnist import input_data
from functools import partial
base_path = "C:\\Users\\Andy\\PycharmProjects\\Tensorboard\\weights\\"
def maybe_create_folder_structure(sub_folders):
for fold in sub_folders:
if not os.path.isdir(base_path + fold):
os.makedirs(base_path + fold)
class Model(object):
def __init__(self, input_size, label_size, initialization, activation, num_layers=3,
hidden_size=100):
self._input_size = input_size
self._label_size = label_size
self._init = initialization
self._activation = activation
# num layers does not include the input layer
self._num_layers = num_layers
self._hidden_size = hidden_size
self._model_def()
def _model_def(self):
# create placeholder variables
self.input_images = tf.placeholder(tf.float32, shape=[None, self._input_size])
self.labels = tf.placeholder(tf.float32, shape=[None, self._label_size])
# create self._num_layers dense layers as the model
input = self.input_images
tf.summary.scalar("input_var", self._calculate_variance(input))
for i in range(self._num_layers - 1):
input = tf.layers.dense(input, self._hidden_size, kernel_initializer=self._init,
activation=self._activation, name='layer{}'.format(i+1))
# get the input to the nodes (sans bias)
mat_mul_in = tf.get_default_graph().get_tensor_by_name("layer{}/MatMul:0".format(i + 1))
# log pre and post activation function histograms
tf.summary.histogram("mat_mul_hist_{}".format(i + 1), mat_mul_in)
tf.summary.histogram("fc_out_{}".format(i + 1), input)
# also log the variance of mat mul
tf.summary.scalar("mat_mul_var_{}".format(i + 1), self._calculate_variance(mat_mul_in))
# don't supply an activation for the final layer - the loss definition will
# supply softmax activation. This defaults to a linear activation i.e. f(x) = x
logits = tf.layers.dense(input, 10, name='layer{}'.format(self._num_layers))
mat_mul_in = tf.get_default_graph().get_tensor_by_name("layer{}/MatMul:0".format(self._num_layers))
tf.summary.histogram("mat_mul_hist_{}".format(self._num_layers), mat_mul_in)
tf.summary.histogram("fc_out_{}".format(self._num_layers), input)
# use softmax cross entropy with logits - no need to apply softmax activation to
# logits
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits,
labels=self.labels))
# add the loss to the summary
tf.summary.scalar('loss', self.loss)
self.optimizer = tf.train.AdamOptimizer().minimize(self.loss)
self.accuracy = self._compute_accuracy(logits, self.labels)
tf.summary.scalar('acc', self.accuracy)
self.merged = tf.summary.merge_all()
self.init_op = tf.global_variables_initializer()
def _compute_accuracy(self, logits, labels):
prediction = tf.argmax(logits, 1)
equality = tf.equal(prediction, tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(equality, tf.float32))
return accuracy
def _calculate_variance(self, x):
mean = tf.reduce_mean(x)
sqr = tf.square(x - mean)
return tf.reduce_mean(sqr)
def init_pass_through(model, fold):
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
with tf.Session() as sess:
sess.run(model.init_op)
train_writer = tf.summary.FileWriter(base_path + fold,
sess.graph)
image_batch, label_batch = mnist.train.next_batch(100)
summary = sess.run(model.merged, feed_dict={model.input_images: image_batch,
model.labels: label_batch})
train_writer.add_summary(summary, 0)
def train_model(model, fold, batch_size, epochs):
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
with tf.Session() as sess:
sess.run(model.init_op)
train_writer = tf.summary.FileWriter(base_path + fold,
sess.graph)
for i in range(epochs):
image_batch, label_batch = mnist.train.next_batch(batch_size)
loss, _, acc = sess.run([model.loss, model.optimizer, model.accuracy],
feed_dict={model.input_images: image_batch,
model.labels: label_batch})
if i % 50 == 0:
print("Iteration {} of {} - loss: {:.3f}, training accuracy: {:.2f}%".
format(i, epochs, loss, acc*100))
summary = sess.run(model.merged, feed_dict={model.input_images: image_batch,
model.labels: label_batch})
train_writer.add_summary(summary, i)
if __name__ == "__main__":
sub_folders = ['first_pass_normal', 'first_pass_variance',
'full_train_normal', 'full_train_variance',
'full_train_normal_relu', 'full_train_variance_relu',
'full_train_he_relu']
initializers = [tf.random_normal_initializer,
tf.contrib.layers.variance_scaling_initializer(factor=1.0, mode='FAN_AVG', uniform=False),
tf.random_normal_initializer,
tf.contrib.layers.variance_scaling_initializer(factor=1.0, mode='FAN_AVG', uniform=False),
tf.random_normal_initializer,
tf.contrib.layers.variance_scaling_initializer(factor=1.0, mode='FAN_AVG', uniform=False),
tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False)]
activations = [tf.sigmoid, tf.sigmoid, tf.sigmoid, tf.sigmoid, tf.nn.relu, tf.nn.relu, tf.nn.relu]
assert len(sub_folders) == len(initializers) == len(activations)
maybe_create_folder_structure(sub_folders)
for i in range(len(sub_folders)):
tf.reset_default_graph()
model = Model(784, 10, initializers[i], activations[i])
if "first_pass" in sub_folders[i]:
init_pass_through(model, sub_folders[i])
else:
train_model(model, sub_folders[i], 30, 1000)