-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathrun_metrics.py
338 lines (273 loc) · 9.13 KB
/
run_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import json
import argparse
import numpy as np
import torch
import stylegan2
from stylegan2 import utils
#----------------------------------------------------------------------------
_description = """Metrics evaluation.
Run 'python %(prog)s <subcommand> --help' for subcommand help."""
#----------------------------------------------------------------------------
_examples = """examples:
# Train a network or convert a pretrained one. In this example we first convert a pretrained one.
python run_convert_from_tf --download ffhq-config-f --output G.pth D.pth Gs.pth
# Project generated images
python %(prog)s project_generated_images --network=Gs.pth --seeds=0,1,5
# Project real images
python %(prog)s project_real_images --network=Gs.pth --data-dir=path/to/image_folder
"""
#----------------------------------------------------------------------------
def _add_shared_arguments(parser):
parser.add_argument(
'--network',
help='Network file path',
required=True,
metavar='FILE'
)
parser.add_argument(
'--num_samples',
type=int,
help='Number of samples to gather for evaluating ' + \
'this metric. Default: %(default)s',
default=50000,
metavar='VALUE'
)
parser.add_argument(
'--size',
type=int,
help='Rescale images so that this is the size of their ' + \
'smallest side in pixels. Default: Unscaled',
default=None,
metavar='VALUE'
)
parser.add_argument(
'--batch_size',
help='Batch size for generator. Default: %(default)s',
type=int,
default=1,
metavar='VALUE'
)
parser.add_argument(
'--output',
help='Root directory for run results. Default: %(default)s',
type=str,
default='./results',
metavar='DIR'
)
parser.add_argument(
'--pixel_min',
help='Minumum of the value range of pixels in generated images. ' + \
'Default: %(default)s',
default=-1,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--pixel_max',
help='Maximum of the value range of pixels in generated images. ' + \
'Default: %(default)s',
default=1,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--gpu',
help='CUDA device indices (given as separate ' + \
'values if multiple, i.e. "--gpu 0 1"). Default: Use CPU',
type=int,
default=[],
nargs='*',
metavar='INDEX'
)
def get_arg_parser():
parser = argparse.ArgumentParser(
description=_description,
epilog=_examples,
formatter_class=argparse.RawDescriptionHelpFormatter
)
subparsers = parser.add_subparsers(help='Sub-commands', dest='command')
fid_parser = subparsers.add_parser('fid', help='Calculate FID')
fid_parser.add_argument(
'--data_dir',
help='Dataset root directory',
required=True,
metavar='DIR'
)
fid_parser.add_argument(
'--reals_batch_size',
help='Batch size for gathering statistics of reals. Default: %(default)s',
type=int,
default=1,
metavar='VALUE'
)
fid_parser.add_argument(
'--reals_data_workers',
help='Data workers for fetching real data samples. Default: %(default)s',
type=int,
default=4,
metavar='VALUE'
)
fid_parser.add_argument(
'--truncation_psi',
help='Truncation psi. Default: %(default)s',
type=float,
default=1.0,
metavar='VALUE'
)
_add_shared_arguments(fid_parser)
ppl_parser = subparsers.add_parser('ppl', help='Calculate PPL')
ppl_parser.add_argument(
'--epsilon',
type=float,
help='Perturbation value. Default: %(default)s',
default=1e-4,
metavar='VALUE'
)
ppl_parser.add_argument(
'--use_dlatent',
type=utils.bool_type,
help='Measure on perturbations of disentangled latents ' + \
'instead of raw latents. Default: %(default)s',
default=True,
const=True,
nargs='?',
metavar='BOOL'
)
ppl_parser.add_argument(
'--full_sampling',
type=utils.bool_type,
help='Measure on random interpolation between two inputs ' + \
'instead of directly on one input. Default: %(default)s',
default=False,
const=True,
nargs='?',
metavar='BOOL'
)
parser.add_argument(
'--ppl_ffhq_crop',
help='Crop images evaluated for PPL with crop values ' + \
'for FFHQ. Default: False',
type=utils.bool_type,
const=True,
nargs='?',
default=False,
metavar='BOOL'
)
_add_shared_arguments(ppl_parser)
return parser
#----------------------------------------------------------------------------
def _report_metric(value, name, args):
fpath = os.path.join(args.output, 'metrics.json')
metrics = {}
if os.path.exists(fpath):
with open(fpath, 'r') as fp:
try:
metrics = json.load(fp)
except Exception:
pass
metrics[name] = value
with open(fpath, 'w') as fp:
json.dump(metrics, fp)
print('\n\nMetric evaluated!:')
print('{}: {}'.format(name, value))
#----------------------------------------------------------------------------
def eval_fid(G, prior_generator, args):
assert args.data_dir, '--data_dir has to be specified.'
dataset = utils.ImageFolder(
args.data_dir,
pixel_min=args.pixel_min,
pixel_max=args.pixel_max
)
assert len(dataset), 'No images found at {}'.format(args.data_dir)
inception = stylegan2.external_models.inception.InceptionV3FeatureExtractor(
pixel_min=args.pixel_min, pixel_max=args.pixel_max)
if len(args.gpu) > 1:
inception = torch.nn.DataParallel(inception, device_ids=args.gpu)
args.reals_batch_size = max(args.reals_batch_size, len(args.gpu))
fid = stylegan2.metrics.fid.FID(
G=G,
prior_generator=prior_generator,
dataset=dataset,
num_samples=args.num_samples,
fid_model=inception,
fid_size=args.size,
truncation_psi=args.truncation_psi,
reals_batch_size=args.reals_batch_size,
reals_data_workers=args.reals_data_workers
)
value = fid.evaluate()
name = 'FID'
if args.size:
name += '({})'.format(args.size)
if args.truncation_psi != 1:
name +='trunc{}'.format(args.truncation_psi)
name += ':{}k'.format(args.num_samples // 1000)
_report_metric(value, name, args)
#----------------------------------------------------------------------------
def eval_ppl(G, prior_generator, args):
lpips = stylegan2.external_models.lpips.LPIPS_VGG16(
pixel_min=args.pixel_min, pixel_max=args.pixel_max)
if len(args.gpu) > 1:
lpips = torch.nn.DataParallel(lpips, device_ids=args.gpu)
crop = None
if args.ppl_ffhq_crop:
crop = stylegan2.metrics.ppl.PPL.FFHQ_CROP
ppl = stylegan2.metrics.ppl.PPL(
G=G,
prior_generator=prior_generator,
num_samples=args.num_samples,
epsilon=args.epsilon,
use_dlatent=args.use_dlatent,
full_sampling=args.full_sampling,
crop=crop,
lpips_model=lpips,
lpips_size=args.size,
)
value = ppl.evaluate()
name = 'PPL'
if args.size:
name += '({})'.format(args.size)
if args.use_dlatent:
name += 'W'
else:
name += 'Z'
if args.full_sampling:
name += '-full'
else:
name += '-end'
name += ':{}k'.format(args.num_samples // 1000)
_report_metric(value, name, args)
#----------------------------------------------------------------------------
def main():
args = get_arg_parser().parse_args()
assert args.command, 'Missing subcommand.'
assert os.path.isdir(args.output) or not os.path.splitext(args.output)[-1], \
'--output argument should specify a directory, not a file.'
if not os.path.exists(args.output):
os.makedirs(args.output)
G = stylegan2.models.load(args.network)
assert isinstance(G, stylegan2.models.Generator), 'Model type has to be ' + \
'stylegan2.models.Generator. Found {}.'.format(type(G))
latent_size, label_size = G.latent_size, G.label_size
device = torch.device(args.gpu[0] if args.gpu else 'cpu')
if device.index is not None:
torch.cuda.set_device(device.index)
G.to(device).eval().requires_grad_(False)
if len(args.gpu) > 1:
G = torch.nn.DataParallel(G, device_ids=args.gpu)
args.batch_size = max(args.batch_size, len(args.gpu))
prior_generator = utils.PriorGenerator(
latent_size=latent_size,
label_size=label_size,
batch_size=args.batch_size,
device=device
)
if args.command == 'fid':
eval_fid(G, prior_generator, args)
elif args.command == 'ppl':
eval_ppl(G, prior_generator, args)
else:
raise TypeError('Unkown command {}'.format(args.command))
if __name__ == '__main__':
main()