forked from explosion/spacy-streamlit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualizer.py
259 lines (233 loc) · 8.77 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from typing import List, Sequence, Tuple, Optional, Dict, Union, Callable
import streamlit as st
import spacy
from spacy.language import Language
from spacy import displacy
import pandas as pd
from .util import load_model, process_text, get_svg, get_html, get_color_styles, LOGO
# fmt: off
NER_ATTRS = ["text", "label_", "start", "end", "start_char", "end_char"]
TOKEN_ATTRS = ["idx", "text", "lemma_", "pos_", "tag_", "dep_", "head", "morph",
"ent_type_", "ent_iob_", "shape_", "is_alpha", "is_ascii",
"is_digit", "is_punct", "like_num", "is_sent_start"]
# fmt: on
FOOTER = """<span style="font-size: 0.75em">♥ Built with [`spacy-streamlit`](https://github.com/explosion/spacy-streamlit)</span>"""
def visualize(
models: Union[List[str], Dict[str, str]],
default_text: str = "",
default_model: Optional[str] = None,
visualizers: List[str] = ["parser", "ner", "textcat", "similarity", "tokens"],
ner_labels: Optional[List[str]] = None,
ner_attrs: List[str] = NER_ATTRS,
similarity_texts: Tuple[str, str] = ("apple", "orange"),
token_attrs: List[str] = TOKEN_ATTRS,
show_json_doc: bool = True,
show_meta: bool = True,
show_config: bool = True,
show_visualizer_select: bool = False,
show_pipeline_info: bool = True,
sidebar_title: Optional[str] = None,
sidebar_description: Optional[str] = None,
show_logo: bool = True,
color: Optional[str] = "#09A3D5",
key: Optional[str] = None,
get_default_text: Callable[[Language], str] = None,
) -> None:
"""Embed the full visualizer with selected components."""
if color:
st.write(get_color_styles(color), unsafe_allow_html=True)
if show_logo:
st.sidebar.markdown(LOGO, unsafe_allow_html=True)
if sidebar_title:
st.sidebar.title(sidebar_title)
if sidebar_description:
st.sidebar.markdown(sidebar_description)
# Allow both dict of model name / description as well as list of names
model_names = models
format_func = str
if isinstance(models, dict):
format_func = lambda name: models.get(name, name)
model_names = list(models.keys())
default_model_index = (
model_names.index(default_model)
if default_model is not None and default_model in model_names
else 0
)
spacy_model = st.sidebar.selectbox(
"Model",
model_names,
index=default_model_index,
key=f"{key}_visualize_models",
format_func=format_func,
)
model_load_state = st.info(f"Loading model '{spacy_model}'...")
nlp = load_model(spacy_model)
model_load_state.empty()
if show_pipeline_info:
st.sidebar.subheader("Pipeline info")
desc = f"""<p style="font-size: 0.85em; line-height: 1.5"><strong>{spacy_model}:</strong> <code>v{nlp.meta['version']}</code>. {nlp.meta.get("description", "")}</p>"""
st.sidebar.markdown(desc, unsafe_allow_html=True)
if show_visualizer_select:
active_visualizers = st.sidebar.multiselect(
"Visualizers",
options=visualizers,
default=list(visualizers),
key=f"{key}_viz_select",
)
else:
active_visualizers = visualizers
default_text = (
get_default_text(nlp) if get_default_text is not None else default_text
)
text = st.text_area("Text to analyze", default_text, key=f"{key}_visualize_text")
doc = process_text(spacy_model, text)
if "parser" in visualizers and "parser" in active_visualizers:
visualize_parser(doc, key=key)
if "ner" in visualizers and "ner" in active_visualizers:
ner_labels = ner_labels or nlp.get_pipe("ner").labels
visualize_ner(doc, labels=ner_labels, attrs=ner_attrs, key=key)
if "textcat" in visualizers and "textcat" in active_visualizers:
visualize_textcat(doc)
if "similarity" in visualizers and "similarity" in active_visualizers:
visualize_similarity(nlp, key=key)
if "tokens" in visualizers and "tokens" in active_visualizers:
visualize_tokens(doc, attrs=token_attrs, key=key)
if show_json_doc or show_meta or show_config:
st.header("Pipeline information")
if show_json_doc:
json_doc_exp = st.beta_expander("JSON Doc")
json_doc_exp.json(doc.to_json())
if show_meta:
meta_exp = st.beta_expander("Pipeline meta.json")
meta_exp.json(nlp.meta)
if show_config:
config_exp = st.beta_expander("Pipeline config.cfg")
config_exp.code(nlp.config.to_str())
st.sidebar.markdown(
FOOTER,
unsafe_allow_html=True,
)
def visualize_parser(
doc: spacy.tokens.Doc,
*,
title: Optional[str] = "Dependency Parse & Part-of-speech tags",
key: Optional[str] = None,
) -> None:
"""Visualizer for dependency parses."""
if title:
st.header(title)
cols = st.beta_columns(4)
split_sents = cols[0].checkbox(
"Split sentences", value=True, key=f"{key}_parser_split_sents"
)
options = {
"collapse_punct": cols[1].checkbox(
"Collapse punct", value=True, key=f"{key}_parser_collapse_punct"
),
"collapse_phrases": cols[2].checkbox(
"Collapse phrases", key=f"{key}_parser_collapse_phrases"
),
"compact": cols[3].checkbox("Compact mode", key=f"{key}_parser_compact"),
}
docs = [span.as_doc() for span in doc.sents] if split_sents else [doc]
for sent in docs:
html = displacy.render(sent, options=options, style="dep")
# Double newlines seem to mess with the rendering
html = html.replace("\n\n", "\n")
if split_sents and len(docs) > 1:
st.markdown(f"> {sent.text}")
st.write(get_svg(html), unsafe_allow_html=True)
def visualize_ner(
doc: spacy.tokens.Doc,
*,
labels: Sequence[str] = tuple(),
attrs: List[str] = NER_ATTRS,
show_table: bool = True,
title: Optional[str] = "Named Entities",
colors: Dict[str, str] = {},
key: Optional[str] = None,
) -> None:
"""Visualizer for named entities."""
if title:
st.header(title)
exp = st.beta_expander("Select entity labels")
label_select = exp.multiselect(
"Entity labels",
options=labels,
default=list(labels),
key=f"{key}_ner_label_select",
)
html = displacy.render(
doc, style="ent", options={"ents": label_select, "colors": colors}
)
style = "<style>mark.entity { display: inline-block }</style>"
st.write(f"{style}{get_html(html)}", unsafe_allow_html=True)
if show_table:
data = [
[str(getattr(ent, attr)) for attr in attrs]
for ent in doc.ents
if ent.label_ in labels
]
df = pd.DataFrame(data, columns=attrs)
st.dataframe(df)
def visualize_textcat(
doc: spacy.tokens.Doc, *, title: Optional[str] = "Text Classification"
) -> None:
"""Visualizer for text categories."""
if title:
st.header(title)
st.markdown(f"> {doc.text}")
df = pd.DataFrame(doc.cats.items(), columns=("Label", "Score"))
st.dataframe(df)
def visualize_similarity(
nlp: spacy.language.Language,
default_texts: Tuple[str, str] = ("apple", "orange"),
*,
threshold: float = 0.5,
title: Optional[str] = "Vectors & Similarity",
key: Optional[str] = None,
) -> None:
"""Visualizer for semantic similarity using word vectors."""
meta = nlp.meta.get("vectors", {})
if title:
st.header(title)
if not meta.get("width", 0):
st.warning("No vectors available in the model.")
else:
cols = st.beta_columns(2)
text1 = cols[0].text_input(
"Text or word 1", default_texts[0], key=f"{key}_similarity_text1"
)
text2 = cols[1].text_input(
"Text or word 2", default_texts[1], key=f"{key}_similarity_text2"
)
doc1 = nlp.make_doc(text1)
doc2 = nlp.make_doc(text2)
similarity = doc1.similarity(doc2)
similarity_text = f"**Score:** `{similarity}`"
if similarity > threshold:
st.success(similarity_text)
else:
st.error(similarity_text)
exp = st.beta_expander("Vector information")
exp.code(meta)
def visualize_tokens(
doc: spacy.tokens.Doc,
*,
attrs: List[str] = TOKEN_ATTRS,
title: Optional[str] = "Token attributes",
key: Optional[str] = None,
) -> None:
"""Visualizer for token attributes."""
if title:
st.header(title)
exp = st.beta_expander("Select token attributes")
selected = exp.multiselect(
"Token attributes",
options=attrs,
default=list(attrs),
key=f"{key}_tokens_attr_select",
)
data = [[str(getattr(token, attr)) for attr in selected] for token in doc]
df = pd.DataFrame(data, columns=selected)
st.dataframe(df)