-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patharguments.py
187 lines (162 loc) · 6.86 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import dataclasses
import json
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional
import torch
# from https://github.com/huggingface/transformers/blob/8e13b7359388882d93af5fe312efe56b6556fa23/src/transformers/hf_argparser.py#L29
def string_to_bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise TypeError(
f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)."
)
@dataclass
class DatasetArguments:
dataset_name: str = field(default=None, metadata={"help": "Name of the dataset to be loaded."})
task_name: Optional[str] = field(
default=None,
metadata={"help": "Name of the task or configuration to be loaded."},
)
dataset_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to a local loading script to optionally load a local dataset."},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
doc_stride: Optional[int] = field(
default=128,
metadata={
"help": "How much stride to take between chunks when splitting up a long document."
"Currently only used for QA tasks."
},
)
train_subset_size: int = field(
default=-1,
metadata={
"help": "Limit the number of training examples."
"If the limit is greater than the training set size or < 0, all examples will be used."
},
)
@property
def base_name(self):
if self.task_name:
return f"{self.dataset_name}_{self.task_name}"
else:
return self.dataset_name
@property
def identifier(self):
return "_".join([self.dataset_name, self.task_name or "", str(self.max_seq_length)])
@dataclass
class ModelArguments:
model_name_or_path: str = field(
default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
use_fast_tokenizer: string_to_bool = field(
default=False,
metadata={"help": "Specifies whether to use Hugginface's Fast Tokenizers."},
)
train_adapter: string_to_bool = field(
default=False,
metadata={"help": "Train an adapter instead of the full model."},
)
adapter_config: Optional[str] = field(
default="pfeiffer",
metadata={"help": "Adapter configuration. Either an identifier or a path to a file."},
)
adapter_non_linearity: Optional[str] = field(
default=None, metadata={"help": "Override the non-linearity of the adapter configuration."}
)
adapter_reduction_factor: Optional[int] = field(
default=None, metadata={"help": "Override the reduction factor of the adapter configuration."}
)
load_adapters: Optional[List[str]] = field(
default=None,
metadata={"help": "List of pre-trained adapters to be loaded."},
)
train_adapter_fusion: Optional[str] = field(
default=None,
metadata={"help": "Train AdapterFusion between the specified adapters instead of the full model."},
)
drop_last_fusion_layer: string_to_bool = False
drop_model_head: string_to_bool = False
@dataclass
class RunArguments:
output_dir: Optional[str] = field(
default=None,
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
)
evaluate_during_training: string_to_bool = field(
default=True,
metadata={"help": "Run evaluation during training after each epoch."},
)
patience: int = field(
default=0,
metadata={
"help": "If > 0 stops training after evaluating this many times consecutively with non-decreasing loss."
},
)
patience_metric: str = field(
default="eval_loss", metadata={"help": "Metric used for early stopping. Loss by default."}
)
batch_size: int = field(default=16, metadata={"help": "Batch size."})
gradient_accumulation_steps: int = field(
default=1,
metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."},
)
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for Adam."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay if we apply some."})
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for Adam optimizer."})
max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
max_steps: int = field(
default=-1,
metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."},
)
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
logging_dir: Optional[str] = field(default=None, metadata={"help": "Tensorboard log dir."})
checkpoint_steps: int = field(default=0, metadata={"help": "Save model checkpoint after every X steps."})
checkpoint_epochs: int = field(default=0, metadata={"help": "Save model checkpoint after every X epochs."})
save_total_limit: Optional[int] = field(
default=None,
metadata={
"help": (
"Limit the total amount of checkpoints."
"Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints"
)
},
)
past_index: int = field(
default=-1,
metadata={"help": "If >=0, uses the corresponding part of the output as the past state for next step."},
)
@property
def device(self):
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
def to_json_string(self):
"""
Serializes this instance to a JSON string.
"""
return json.dumps(dataclasses.asdict(self), indent=2)
def to_sanitized_dict(self) -> Dict[str, Any]:
"""
Sanitized serialization to use with TensorBoard’s hparams
"""
d = dataclasses.asdict(self)
valid_types = [bool, int, float, str, torch.Tensor]
return {k: v if type(v) in valid_types else str(v) for k, v in d.items()}