-
Notifications
You must be signed in to change notification settings - Fork 636
/
metrics.py
66 lines (46 loc) · 1.35 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
class Metric:
def __init__(self):
pass
def __call__(self, outputs, target, loss):
raise NotImplementedError
def reset(self):
raise NotImplementedError
def value(self):
raise NotImplementedError
def name(self):
raise NotImplementedError
class AccumulatedAccuracyMetric(Metric):
"""
Works with classification model
"""
def __init__(self):
self.correct = 0
self.total = 0
def __call__(self, outputs, target, loss):
pred = outputs[0].data.max(1, keepdim=True)[1]
self.correct += pred.eq(target[0].data.view_as(pred)).cpu().sum()
self.total += target[0].size(0)
return self.value()
def reset(self):
self.correct = 0
self.total = 0
def value(self):
return 100 * float(self.correct) / self.total
def name(self):
return 'Accuracy'
class AverageNonzeroTripletsMetric(Metric):
'''
Counts average number of nonzero triplets found in minibatches
'''
def __init__(self):
self.values = []
def __call__(self, outputs, target, loss):
self.values.append(loss[1])
return self.value()
def reset(self):
self.values = []
def value(self):
return np.mean(self.values)
def name(self):
return 'Average nonzero triplets'