-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlosses.py
57 lines (42 loc) · 1.61 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
def bin_mask_loss_multi(mask):
return torch.minimum(mask, 1 - mask).sum(1).mean()
def min_mask_loss_multi(mask, min_mask_area):
return torch.relu(min_mask_area - mask.mean((-1, -2))).sum(1).mean()
def max_mask_loss_multi(mask, max_mask_area):
return torch.relu(mask.mean((-1, -2)) - max_mask_area).sum(1).mean()
class Loss:
def __init__(self, key, loss_fn, alpha, name, warmup_iters=0):
self.key = key
self.loss_fn = loss_fn
self.alpha = alpha
self.name = name
self.warmup_iters = warmup_iters
self.iter = 0
def __call__(self, return_dict):
loss = self.loss_fn(return_dict[self.key])
if self.iter < self.warmup_iters:
alpha = self.alpha * self.iter / self.warmup_iters
self.iter += 1
else:
alpha = self.alpha
return {self.name: alpha * loss}, {self.name: loss}
class ComposeLoss:
def __init__(self, *losses):
self.losses = losses
def __call__(self, return_dict):
scaled_loss_dict, loss_dict = {}, {}
for loss in self.losses:
scaled_loss, loss = loss(return_dict)
scaled_loss_dict.update(scaled_loss)
loss_dict.update(loss)
return scaled_loss_dict, loss_dict
class MultiLoss:
def __init__(self, keys, loss_fn, alpha, name):
self.keys = keys
self.loss_fn = loss_fn
self.alpha = alpha
self.name = name
def __call__(self, return_dict):
loss = self.loss_fn(*[return_dict[key] for key in self.keys])
return {self.name: self.alpha * loss}, {self.name: loss}